• 제목/요약/키워드: actuator

검색결과 4,325건 처리시간 0.034초

형상기억합금 응용 스마트 액추에이터-제어기 설계 (Smart Actuator-Control System Design Using Shape Memory Alloys)

  • 김영식;장태수
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권7호
    • /
    • pp.1451-1456
    • /
    • 2017
  • 본 연구에서는 형상기억합금(SMA)을 응용한 스마트 액추에이터의 효율적 제어를 위한 통합 액추에이터-제어기 시스템 설계를 논의한다. 이를 위하여 두 개의 스마트 SMA 액추에이터 유닛과 함께 제어를 위한 싱글 칩 마이크로프로세서, 액추에이터 드라이버, 센서를 통합한 새로운 액추에이터-제어기 모듈을 설계하고 제작하였다. 제안된 시스템에서는 피드백 제어를 위해 모듈의 회전을 측정하는 6축 모션센서 칩과 SMA의 저항을 측정하는 회로를 포함한다. 실험을 통하여 액추에이터의 구동과 센서 신호와 통신을 확인하였고 이를 통하여 실제 액추에이터-제어기 시스템의 작동을 확인하였다.

관성형 작동기를 이용한 능동 하이브리드 마운트 시스템의 진동제어 성능 평가 (Evaluation of Vibration Control Performance for Active Hybrid Mount System Featuring Inertial Actuator)

  • 오종석;최승복;벤큐오;문석준
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.768-773
    • /
    • 2011
  • This work presents an experimental investigation on vibration control of the active hybrid mount system for naval ships. To reduce unwanted vibrations, this paper proposes an active mount which consists of rubber element, piezostack actuator and inertial mass. The rubber element supports a mass. The piezostack actuator generates a proper control force and supply it to the mount system. To avoid being broken piezostack actuator, an actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is positioned between inertial mass and rubber element. Vibration control performances of the active mount system are evaluated via experiment. To attenuate the unwanted vibrations transferred from upper mass, the feedforward control is designed. In order to implement a control experiment, the active mount system supported by four active mounts is constructed. For realization of the controller, one-chip board is manufactured and utilized. Subsequently, vibration control performances of the proposed active mount system are experimentally evaluated in frequency domains.

PZT를 이용한 광 정보저장기기용 액추에이터의 트랙 추적제어 (Track-following Control of an Optical Pick-up Actuator Using PZT)

  • 정동하;박태욱;박노철;양현석;이우철
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.385-393
    • /
    • 2004
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(voice coil motor) for coarse motion, for an SFF ODD(small form factor optical disk drive), in order to achieve fast access speed and precise track-following control. Over the past few decades there have been a lot of researches related to the VCM and dual-stage actuator. In this paper, we focus our attention on the design and control of the PZT actuator. Due to the dual cantilever structure. the PZT actuator can generate precise translational tracking motion at its tip to which an optical pickup is attached. and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing it with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

적층형 세라믹 엑추에이터를 이용한 MEMS용 압전밸브의 제작 및 특성 (Fabrication and Characteristics of a Piezoelectric Valve for MEMS using a Multilayer Ceramic Actuator)

  • 정귀상;김재민;윤석진
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.515-520
    • /
    • 2004
  • We report on the development of a Piezoelectric valvc that is designed to have a high reliability for fluid control systems, such as mass flow control, transportation and chemical analysis. The valve was fabricated using a MCA(multilayer ceramic actuator), which has a low consumption power, high resolution and accurate control. The fabricated valve is composed of MCA, a valve actuator die and an seat die. The design of the actuator dic was done by FEM(finite element method) modeling, respectively. And, the valve seat die with 6 trenches was made. and the actuator die, which possible to optimize control to MCA, was fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the scat/actuator die structure. PDMS(poly dimethylsiloxane) sealing pad was fabricated to minimize a leak-rate. It was also bonded to scat die and stainless steel package. The flow rate was 9.13 sccm at a supplied voltage of 100 V with a 50 % duty ratio and non-linearity was 2.24 % FS. From these results, the fabricated MCA valve is suitable for a variety of flow control equipments, a medical bio-system, semiconductor fabrication process, automobile and air transportation industry with low cost, batch recess and mass production.

메탈 프린팅용 압전액추에이터의 특성개선 (Characteristics Improvement of a PZT Actuator for Metal Printing)

  • 윤소남;함영복;김찬용;박평원;강정호
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.162-167
    • /
    • 2005
  • The purpose of this paper is to improve the hysteresis characteristics of a stack type piezoelectric actuator using system identification and tracking control. Recently, several printing methods that are cost less and faster than previous semiconductor processes have been developed for the production of electric paper and RFID(Radio Frequency IDentification). The system proposed in this study prints by spraying the molten metal. And this system consist of a nozzle, heating furnace, operating actuator and an XYZ 3-axis stage. As an operating system, the piezoelectric(PZT) actuator is a very useful tool for position control of the metal printing system. However, the PZT actuator has a hysteresis nonlinearity due to the ferroelectric characteristics of the PZT element. This hysteresis causes problem position control characteristics in the system and deteriorates the performance of the system. In this study, an investigation was conducted to improve the hysteresis characteristics of the PZT actuator that has an output displacement for the input voltage. In order to reduce the hysteresis nonlinearity of the PZT actuator, this proposed a inverse hysteresis model and a mathematic modeling method that can express the geometric relationship between voltage and displacement. In addition, system identification and PID control methods were examined. Also, it was confirmed that the proposed control strategy gives good tracking performance.

  • PDF

분포형 압전 필름 감지기와 압전 세라믹 작동기를 이용한 보의 진동 제어 (Vibration Control of Beam using Distributed PVDF sensor and PZT actuator)

  • 박근영;유정규;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.413-417
    • /
    • 1997
  • Distributed piezoelectric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF are used in this study, the former as an actuator and the latter as a sensor for our integrated structure. For the PZT actuator, the position and size have been optimized. Optimal electrode shape of the PVDF sensor has been determined. For multi-mode vibration control, we have used two PZT actuators and a PVDF sensor. Electrode shading of PVDF is more powerful for modal force adjustment than the sizing and positioning of PZT. Finite element method is used to model the structure that includes the PZT actuator and the PVDF sensor. By deciding on or off of each PZT segment, the length and the location of the PZT actuator are optimize. Considering both of the host structure and the optimized actuators, it is designed that the active electrode width of PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Sensor is designed to minimize the observation spill-over. Modal control forces for the residual(uncontrolled) modes have been minimized during the sensor design. Genetic algorithm, which is suitable for this kind of discrete problems, has been utilized for optimization. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

굴곡 진동모드를 이용한 초음파 선형 압전 액추에이터 개발 (Development of ultrasonic linear piezoelectric actuator with flexuralvibration mode)

  • 윤장호;최우천;강종윤;강진규;윤석진
    • 센서학회지
    • /
    • 제18권6호
    • /
    • pp.461-466
    • /
    • 2009
  • This paper represents a piezoelectric ultrasonic linear actuator with flexural vibration mode. The actuator is composed of two piezo ceramics, the elastic body, and the connecting tip. It is driven by the frictional force between the connecting tip and the linear motion guide. Unimorph actuators have flexural vibration. Its middle point is fixed so that suitable to the flexural vibration of $3/2\lambda$. These vibrations contribute to elliptical motion by mixed mode between longitudinal and transverse mode. It was generated when the ultrasonic electrical signals with 90 degree phase difference are applied to two ceramics. A linear movement can be easily obtained using the elliptical motion. The ATILA, FEM simulator has been used to design actuator and verify the kinetic and dynamic analysis. We used the ceramics of $20\times10\times1$ mm size and confirmed the flexural vibration of the $3/2\lambda$ at the 79 kHz through the scanning of 3D-vibrometer. The maximum velocity of actuator was 221 mm/sec and the thrust force of actuator was 2.7 N in 200Vp-p of additional voltage.

초소형 광디스크 드라이브용 스윙암 방식 로터리 엑츄에이터 설계 및 분석 (Design and Analysis of Swingarm Type Rotary Actuator for Micro ODD)

  • 김동욱;홍어진;박노철;박영필;김수경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.780-785
    • /
    • 2003
  • Recently the trends in information storage devices need small size, mobility, high capacity, and low power consumption etc. To satisfy those, the development of high performance actuator is an important issue. Compared with general linear actuator for optical disk drive, swingarm type rotary actuator is suitable to design in small form factor and has fast access time for random access. Swingarm actuator is designed considering the structural problem and the actuating force of VCM(Voice Coil Motor). The increase of mass caused by optical components makes vibration problems of swing-arm, therefore resonance frequency should be increased and inertia has to be reduced. ANSYS FEM tool is employed in optimizing swingarm. The VCM is designed using 3-D electro-magnetic analysis, and parameters of magnetic circuit are determined to matte large flux density. The large flux density enables to achieve low power consumption. VCM holder is designed to get the mass balance of total actuator and this balance reduces the magnitude of critical mode relative to pivot bearing, It is expected that swingarm type rotary actuator designed by this method is available to variable type of micro optical disk drives.

  • PDF

PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계 (Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film)

  • 황준석;목지원;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

할바 자석배열을 이용한 초소형 정보저장장치의 초점 구동기 설계 (Halbach Array Type Focusing Actuator for Small and Thin Optical Data Storage Device)

  • 이성규;박강호;백문철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.65-69
    • /
    • 2004
  • The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flash memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 m thickness. The thickness of focusing actuator is within 2 mm and the total working range is $+/-100{\mu}m$, with the resolution of less than $1{\mu}m$. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flux density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The working range and resolution of focusing actuator are analyzed with FEM and experiment.

  • PDF