• Title/Summary/Keyword: actual thickness

Search Result 428, Processing Time 0.026 seconds

Thermal Resistance and Condensation in the Light-frame Timber Wall Structures with Various Composition of Insulation Layers

  • Jang, Sang Sik;Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2019
  • As energy costs increase, more people has become interested on energy efficiency and savings in residential buildings. The two main subjects related to energy in residential buildings are insulation and condensation. There are two approaches to prevent condensation; increasing air tightness and maintaining the temperature inside of the wall structure over the dew point, which is in turn related to insulation. Even though the Korean government has highlighted the importance of energy efficiency for residential housings, and in spite of the customers' demands, the timber construction industry is still using conventional light-frame construction without even trying to improve energy efficiency. In this study, various types and combinations of wall structures were tested under cold outdoor and warm indoor temperatures to analyse the temperature gradients and to determine the possible sites of condensation in the wall structures. In addition to the experimental tests, three theoretical models were developed and their estimations of temperature change through the wall structure were compared with the actual measurements to evaluate accuracy of the models. The results of the three models agree relatively well with the experimental values, indicating that they can be used to estimate temperature changes in wall structures. The theoretical analysis of different insulation layers' combinations show that condensation may occur within the mid-layer in the conventional light-frame wall structures for any combination of inner-, mid-, and outer-layers of insulation. Therefore, it can be concluded that the addition of an inner and outer insulation layer or increasing the thickness of insulation may not be adequate to prevent condensation in the wall structure without preventing penetration of warm moist air into the wall structure.

Bending analysis of functionally graded plates with arbitrary shapes and boundary conditions

  • Panyatong, Monchai;Chinnaboon, Boonme;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.627-641
    • /
    • 2019
  • The paper focuses on bending analysis of the functionally graded (FG) plates with arbitrary shapes and boundary conditions. The material property of FG plates is modelled by using the power law distribution. Based on the first order shear deformation plate theory (FSDT), the governing equations as well as boundary conditions are formulated and obtained by using the principle of virtual work. The coupled Boundary Element-Radial Basis Function (BE-RBF) method is established to solve the complex FG plates. The proposed methodology is developed by applying the concept of the analog equation method (AEM). According to the AEM, the original governing differential equations are replaced by three Poisson equations with fictitious sources under the same boundary conditions. Then, the fictitious sources are established by the application of a technique based on the boundary element method and approximated by using the radial basis functions. The solution of the actual problem is attained from the known integral representations of the potential problem. Therefore, the kernels of the boundary integral equations are conveniently evaluated and readily determined, so that the complex FG plates can be easily computed. The reliability of the proposed method is evaluated by comparing the present results with those from analytical solutions. The effects of the power index, the length to thickness ratio and the modulus ratio on the bending responses are investigated. Finally, many interesting features and results obtained from the analysis of the FG plates with arbitrary shapes and boundary conditions are demonstrated.

Approximate Design Optimization of Active Type Desk Support Frame for Float-over Installation Using Meta-model (메타모델을 이용한 플로트오버 설치 작업용 능동형 갑판지지프레임의 근사설계최적화)

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.31-43
    • /
    • 2021
  • In this study, approximate design optimization using various meta-models was performed for the structural design of active type deck support frame. The active type deck support frame was newly developed to facilitate both transportation and installation of 20,000 ton class offshore plant topside. Structural analysis was carried out using the finite element method to evaluate the strength performance of the active type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions that were regulated in ship classification organization. The approximate optimum design problem based on meta-model was formulated such that thickness sizing variables of main structure members were determined by achieving the minimum weight of the active type deck support frame subject to the strength performance constraints. The meta-models used in the approximate design optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. The results from approximate design optimization were compared to actual non-approximate design optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate design optimization represented the most pertinent optimum design results for the structure design of the active type deck support frame.

Application and Verification of Liquefaction Potential Index in Liquefaction Potential Assessment of Korean Port and Harbor (국내 항만 및 어항시설의 액상화 평가에 있어서 액상화 가능성 지수의 적용성 검토)

  • Choi, Jae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.33-46
    • /
    • 2021
  • After the Gyeongju earthquake, which was the largest in the history of measuring instruments in Korea in 2016, and after the Pohang earthquake, where the pillars of pallet structures were destroyed in 2017, the seismic design standards for all domestic facilities have been revised and supplemented. In particular, during the investigation of the Pohang Earthquake damage cases, liquefaction damage that occurs mainly in countries with strong earthquakes such as the United States, Japan, and New Zealand was found, so studies are being conducted in depth to improve seismic design standards. In this study, the liquefaction potential assessment in the recently revised seismic design standard for port and harbor was reviewed, and an applicability review was conducted focusing on the newly cited liquefaction potential index (LPI). At this time, by varying the thickness and location of the sandy soil where liquefaction can occur, the LPIs for various cases were calculated and compared. Also, 22 LPI values in the practical port area were compared and reviewed along with performance of the liquefaction assessment based on the site response analysis using the boring-hole data of the actual 22 port sites.

Taguchi method-optimized roll nanoimprinted polarizer integration in high-brightness display

  • Lee, Dae-Young;Nam, Jung-Gun;Han, Kang-Soo;Yeo, Yun-Jong;Lee, Useung;Cho, Sang-Hwan;Ok, Jong G.
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2022
  • We present the high-brightness large-area 10.1" in-cell polarizer display panel integrated with a wire grid polarizer (WGP) and metal reflector, from the initial design to final system development in a commercially feasible level. We have modeled and developed the WGP architecture integrated with the metal reflector in a single in-cell layer, to achieve excellent polarization efficiency as well as brightness enhancement through the light recycling effect. After the optimization of key experimental parameters via Taguchi method, the roll nanoimprint lithography employing a flexible large-area tiled mold has been utilized to create the 90 nm-pitch polymer resist pattern with the 54.1 nm linewidth and 5.1 nm residual layer thickness. The 90 nm-pitch Al gratings with the 51.4 nm linewidth and 2150 Å height have been successfully fabricated after subsequent etch process, providing the in-cell WGPs with high optical performance in the entire visible light regime. Finally we have integrated the WGP in a commercial 10.1" display device and demonstrated its actual operation, exhibiting 1.24 times enhancement of brightness compared to a conventional film polarizer-based one, with the contrast ratio of 1,004:1. Polarization efficiency and transmittance of the developed WGPs in an in-cell polarizer panel achieve 99.995 % and 42.3 %, respectively.

Development of Fashion Design Applying Code and Tape Trimming Decoration Techniques of Computer Embroidery Machine (컴퓨터 자수기계 코드 및 테이프 트리밍 장식기법을 활용한 패션디자인 개발)

  • Seoyun, Lee;Jiyoung, Kim
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.1-21
    • /
    • 2022
  • Purpose of this study is to develop fashion design with greater added value and to seek the expandability of its expression domain by applying special computer code and tape embroidery machine capable of creating more special and fancier fashion to the development of fashion design by focusing on the fashion decorations that are becoming increasingly more computer systematized. For this purpose, expression techniques and effects of computer embroidery machine code and tape trimming decoration techniques, and cases of modern fashion design are examined. Major images are then deduced to designing and production of actual 6 creative pieces equipped with creativity and commercial value by applying such images deduced. As the results, it is not only possible to develop highly value added fashion design by utilizing mixed computer embroidery machine code and tape trimming decoration technique but also to produce countlessly new and unique surfaces by inducing changes in diversified pattern expressions, thickness of cord thread, and width, color and texture of material, etc. of the tape. This can maximize the expression domain of design, and fulfill the fashion desires of consumers wanting modern enhancement of quality and individualization. If multilateral attempts and studies for the aforementioned purposes can be expanded continuously, it is deemed possible to broaden the range of expression techniques in fashion design and, moreover, to make contribution towards enhancement of competitiveness of fashion industry.

Feasibility Analysis of Exploring Underground Utilities Using Muon (뮤온 입자를 활용한 지하매설물 탐사 가능성 분석)

  • Seo, Seunghwan;Chung, Moonkyung;Kwak, Kiseok;Kang, Jae Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.137-147
    • /
    • 2022
  • Various geophysical exploration methods are used to determine the exact location of underground utilities, and many studies have been performed to improve the accuracy. This study analyzed the feasibility of exploring underground utilities through a new exploration method using cosmic ray muon. A prototype of a portable muon detector was manufactured by combining a scintillator and a silicon photomultiplier. Further, a calibration operation was performed on the muon count rate. The ground thickness of the ground model was measured using the muon detector prototype, where the value could be estimated with an error of about 3%, close to the actual. In addition, the theoretical basis for tomography analysis technology was analyzed to utilize the muon detector for exploring underground utilities, and a zenith angle correction method was presented. This study revealed that the technology of exploration using muon can analyze density with high resolution and will be used for exploring underground utilities.

Development and Evaluation of Large Scale Composite Lattice Structures (대형 복합재 격자구조체 개발 및 평가)

  • Kim, Donggeon;Doh, Youngdae;Kim, Gensang;Kim, Myungjoo;Lee, Sangwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.74-86
    • /
    • 2021
  • The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.

A Study on the Texturing Characteristics of Work Roll and Variation of Strip Surface Roughness in 4-Hi Mill (4단 압연기용 작업롤의 표면조도가공 특성과 판면조도 변화에 관한 연구)

  • Kim, Moon Kyung;Jeon, Eon Chan;Kim, Soon Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.167-175
    • /
    • 1996
  • Work roll wear in the cold rolling of steel strip is strongly affected by rolling materials, rolling conditions and lubrication. Tests were performed to find the effects of rolling materials under the same lubricating conditions. Surface roughness of cold rolled steel strip as well as the coating technique itself is quite improtant in obtaining high image clarity of electronic products and car outer panels. Therefore this paper reviews for improvement of roughness and peak count about the surface of Cr coated work roll is investigated from the actual temper mill. The conclusions were obtained as follows; 1) Work roll wear in the cold rolling of steel strip is strongly affected by carbon contents of rolling materials, but there is not a separating force and total reduction ratio. 2) The roughness of strip surface is larger in the direction of width than in roll direction. 3) The electro-discharge textured roll has more uniform roughness distribu- tion than shot blasted roll and it's life time is two times longer than shot blasted because it has more harmonic wave roughness, and the higher peak count of surface roughness. 4) The life time of Cr coated work roll is 2 times longer than that of shot blasted work roll and variation of peak count, roughness and life time of Cr coated work roll is similar to electro-discharge texturing work roll. 5) The proper Cr coating thickness is 10 .mu. m at the work roll of temper mill.

  • PDF

A Study on Mechanical Properties of IPMC actuators (IPMC 작동기의 기계적 물성에 관한 연구)

  • Kim, Hong-Il;Kim, Dae-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.50-54
    • /
    • 2007
  • The Ionic Polymer Metal Composite (IPMC), an electro-active polymer, has many advantages including bending actuation, low weight, low power consumption, and flexibility. These advantages coincide with the requirements of a bio-related application. Thus, IPMC is promising materials for bio-mimetic actuator and sensor applications. Before applying IPMC to actual application, basic mechanical properties of IPMC should be studied in order to utilize IPMC for practical uses. Therefore, IPMCs are fabricated to investigate the mechanical characteristics. Nafion is used as a base ionic polymer. Mason samples cast with various thicknesses are used to test the thickness effects of IPMC. Subsequently, IPMC is fabricated using the chemical reduction method. The deformation, blocking force and frequency response of the IPMC actuator are important properties. In this present study, the performances of the IPMC actuators, including the deformation, blocking force and natural frequency, are then obtained according to only the input voltage and IPMC dimensions. Finally, the empirical performance model and the equivalent stiffness model of the IPMC actuator are established using experiments results.