In this paper, we propose a novel approach to statistical model-based voice activity detection (VAD) that incorporates a second-order conditional maximum a posteriori (CMAP) criterion. As a technical improvement for the first-order CMAP criterion in [1], we consider both the current observation and the voice activity decision in the previous two frames to take full consideration of the interframe correlation of voice activity. This is clearly different from the previous approach [1] in that we employ the voice activity decisions in the second-order (previous two frames) CMAP, which has quadruple thresholds with an additional degree of freedom, rather than the first-order (previous single frame). Also, a soft-decision scheme is incorporated, resulting in time-varying thresholds for further performance improvement. Experimental results show that the proposed algorithm outperforms the conventional CMAP-based VAD technique under various experimental conditions.
This paper presents a novel approach for human activity recognition (HAR) using the joint angles from a 3D model of a human body. Unlike conventional approaches in which the joint angles are computed from inverse kinematic analysis of the optical marker positions captured with multiple cameras, our approach utilizes the body joint angles estimated directly from time-series activity images acquired with a single stereo camera by co-registering a 3D body model to the stereo information. The estimated joint-angle features are then mapped into codewords to generate discrete symbols for a hidden Markov model (HMM) of each activity. With these symbols, each activity is trained through the HMM, and later, all the trained HMMs are used for activity recognition. The performance of our joint-angle-based HAR has been compared to that of a conventional binary and depth silhouette-based HAR, producing significantly better results in the recognition rate, especially for the activities that are not discernible with the conventional approaches.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.6
/
pp.32-48
/
2023
Autonomous driving technology is shaping the future of personalized travel, encouraging personalized travel, and traffic impact could be influenced by individualized travel behavior during the transition of driving entity from human to machine. In order to evaluate traffic impact, it is necessary to estimate the total number of trips based on an understanding of individual travel characteristics. The Activity-based model(ABM), which allows for the reflection of individual travel characteristics, deals with all travel sequences of an individual. Understanding the relationship between travel and travel must be important for assessing traffic impact using ABM. However, the ABM has a limitation in the data hunger model. It is difficult to adjust in the actual demand forecasting. Therefore, we utilized a Tour-based model that can explain the relationship between travels based on household travel survey data instead. After that, vehicle registration and population data were used for correction. The result showed that, compared to the KTDB one, the traffic generation exhibited a 13% increase in total trips and approximately 9% reduction in working trips, valid within an acceptable margin of error. As a result, it can be used as a generation correction method based on Tour, which can reflect individual travel characteristics, prior to building an activity-based model to predict demand due to the introduction of autonomous vehicles in terms of road operation, which is the ultimate goal of this study.
In this paper, we propose a novel approach to improve the performance of a statistical model-based voice activity detection (VAD) which is based on the conditional maximum a posteriori (CMAP) with deviation. In our approach, the VAD decision rule is expressed as the geometric mean of likelihood ratios (LRs) based on adapted threshold according to the speech presence probability conditioned on both the speech activity decisions and spectral deviation in the pervious frame. Experimental results show that the proposed approach yields better results compared to the CMAP-based VAD using the LR test.
Journal of the Korean Institute of Landscape Architecture
/
v.23
no.1
/
pp.95-109
/
1995
All human spatial behavior and psychological stress are affected by the 'Privacy'of each space. This Paper deals with the theoretical review of 'privacy'concept and establishment of 'Privacy Model' that can be a useful design tool. 'Privacy Index(Pl)' model of 10 point scale, which is based on 'Hierarchic system of Privacy' in urban spaces by Chermeyeff and Alexander(1963), was established as a hypothetical model in this study. And'Activity Suitability', based on each hierarchy of primacy level, was investigated at each site to construct the validity of 'Privacy Model'. Total 67 sites were investigated by on.-site questionnaire in 3 types of outdoor spaces, (Park), (Campus), and (Garden) respectively. The major results are as follows; 1. The P7rivacy level of earth spaces, distributed from to in and . and (Groun Private> spaces are dominant In , spaces are dondnant 2, Privacy level, based on , showed higher privacy level than that of . This means the criteria of each privacy level should be modified for more specific space. The . could be derived from the (Activity Suitability) of each space. 3.The cognition of privacy level. by user group, showed no significant difference in dach group by sex, age, education, and job, respectively.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.4
/
pp.2060-2077
/
2019
Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.
Inquiry has great value in environmental education(EE). Being able to see the world environmentally through 'inquiry-based environmental education' can be an important value and goal of EE. In this study, we intended to develop an EE program of measuring activity of dissolved oxygen(DO), based on the theory of 'inquiry-based EE'. Especially, we recognized the potential that DO meter can be used in 'inquiry-based EE', and we tried to develop a model of inquiry-based EE using DO meter. As a result of this research, we present specific models of inquiry-based EE about how to perform measuring activity of DO and how to use the DO meter in laboratories and streams from the perspective of inquiry of water environment. In the process of program development, we considered organization of the inquiry process, use of concept and knowledge, scientific inquiry and insightful inquiry, integration, sustain-ability, content components of 'Environmental Studies for EE', developmental level and in-forest of students. The developed EE model is a scientific inquiry model, pursuing 'explanation' based on data collection. Through this model, we tried to make students see water environment more deeply. The developed program can be applied to various water environments, like laboratories, streams, ponds, etc. It can be more effective inquiry activity if we perform measuring activities simultaneously with PH, electrical conductivity, and turbidity meters.
Journal of Korean Library and Information Science Society
/
v.54
no.1
/
pp.167-190
/
2023
This study is a literature study that analyzed the research data curation models using activity theory as a theoretical framework. Based on the factors of the activity used in the activity theory, this study analyzed various research data curation models, as well as issues that needed discussion in the library field in carrying out research data curation activities. And based on this, a new research data curation conceptual model was proposed. This study analyzed how the five previously proposed digital curation lifecycle models are configured, and analyzed the actions presented sporadically in each model. A new research data curation conceptual model was proposed by analyzing factors, extracting common factors and integrating them into a new model. In addition, six issues to be considered in carrying out research data curation activities in libraries and repositories were analyzed and discussed. The research data curation conceptual model proposed in this study consists of a total of 10 steps, and it contains practical issues and contradictions to consider at each stage of activity.
Microsomal prostaglandin $E_2$ synthase (mPGES-1) is an enzyme that is associated with inflammation, pain, fever and cancer. Hologram quantitative structure activity relationship (HQSAR) was conducted on the series of MK-886 compounds acting as mPGES-1 inhibitors. A training set with 24 compounds was used to establish the HQSAR model. The best model was chosen based on the cross-validated correlation coefficient ($q^2$=0.884) and the correlation coefficient($r^2$=0.976). The model was utilized to predict the activity of the eight-test set of compounds giving the predictive $r^2$ value of 0.845. The descriptors of the model are based on fragment distinction (atoms, bond and connectivity) and fragment size (2-5 atoms). The atomic contribution maps generated from HQSAR were useful in identifying the important structural features responsible for the inhibitory activity of MK-886 inhibitors. Based on the generated model, the presence of hydrophobic biphenyl group seems to enhance inhibition of mPGES-1 that is in agreement with the previous experiments. In addition, it seems important for a halogen to be substituted to the biphenyl ring and for an acyl group to be attached to the indole moiety for enhanced activity.
International Journal of Advanced Culture Technology
/
v.9
no.1
/
pp.210-217
/
2021
In the case of an agile-based project, it was inadequate to perform a comprehensive inspection and evaluation on the establishment and operation of an information system by performing audit only with the audit and inspection elements provided by the existing information system audit and inspection system. In particular, in the case of the test activity area, it was necessary to improve the test activity audit check items to comprehensively check the agile-based development process by applying the existing audit system. To this end, a test activity improvement check model of the agile methodology audit model was presented by applying the repetition concept, a characteristic of the agile methodology. In order to empirically verify the model of this study, a survey was conducted for auditors and designers/developers who have experience in performing agile-based projects and auditing information systems. As a result of the questionnaire on the integrated test and system test in the test stage, more than 70% of the respondents were found to be suitable. More than 80% of the respondents judged that it was appropriate as a result of the questionnaire on "improvement and regression test progress according to integrated test and system test results" and "integrated test and functional actions of components and subsystems".
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.