
HQSAR Study of Microsomal Prostaglandin E? Synthase Inhibitors Bull. Korean Chem. Soc. 2006, Vol. 27, No. 10 1531

HQSAR Study of Microsomal Prostaglandin E2 Synthase (mPGES-1) Inhibitors

Amor A. San Juan/^ Seung Joo Cho/^ and Hoon Cho§ *

Biochemicals Research Center, Korea Institute of Science and Technology, Seoul 130-650, Korea. ^E-mail: chosj@kist.re.kr 
■^University of Science and Technology, Daejeon 305-330, Korea

^College of Engineering, Chosun University, Gwangju 501-759, Korea. ^E-mail: hcho@chosun.ac.kr 
Received May 15, 2006

Microsomal prostaglandin Ez synthase (mPGES-1) is an enzyme that is associated with inflammation, pain, 
fever and cancer. Hologram quantitative structure activity relationship (HQSAR) was conducted on the series 
ofMK-886 compounds acting as mPGES-1 inhibitors. A training set with 24 compounds was used to establish 
the HQSAR model The best model was chosen based on the cross-validated correlation coefficient (g2 =0.884) 
and the correlation coefficient (r = 0.976). The model was utilized to predict the activity of the eight-test set 
of compounds giving the predictive r value of 0.845. The descriptors of the model are based on fragment 
distinction (atoms, bond and connectivity) and fragment size (2-5 atoms). The atomic contribution maps 
generated from HQSAR were useful in identifying the important structural features responsible for the 
inhibitory activity ofMK-886 inhibitors. Based on the generated model, the presence ofhydrophobic biphenyl 
group seems to enhance inhibition of mPGES-1 that is in agreement with the previous experiments. In addition, 
it seems important for a halogen to be substituted to the biphenyl ring and for an acyl group to be attached to 
the indole moiety for enhanced activity.
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Introduction

The biosynthesis of prostanoids is regulated by three 
sequential enzymatic steps1 such as phospholipase A2 
enzymes, cyclooxygenase (COX) enzymes, and various 
lineage-specific terminal prostanoid synthases. Prostaglan
din E synthase (PGES) is present in various forms that 
isomerize COX-derived PGH2 specifically to PGE2. Two of 
them are membrane-bound enzymes and have been design
ated as mPGES-1 and mPGES-2. The microsomal prostag
landin E2 synthase (mPGES-1)2 is the terminal isomerase in 
the PGE2 synthetic pathway that is involved in inflam
matory response? Specifically targeting mPGES-1 enzyme 
should interfere almost exclusively with inflammation- 
induced PGE2, leaving not only the constitutive PGE2 
synthesis unaffected, but also the synthesis of other COX- 
derived prostanoids. Therefore, mPGES-1 inhibition should 
have more selective effects compared to inhibition of 
enzymes earlier in the pathway

There is an increasing interest to develop an inhibitor that 
might be selective to PGE2 synthesis by inhibiting mPGES- 
1, in effect avoiding many of the side effects associated with 
presently available non-steroidal anti-inflammatory drugs 
(NSAIDs). Specific removal of PGE2 by inhibition of 
mPGES-1 may be used to provide the control of inflam
matory reactions with fewer side effects in comparison with 
presently used NSAIDs. To date there are no known specific 
inhibitors of mPGES-L A study showed that the N-(2- 
cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS- 
398) inhibitor (selective cyclooxygenase-2 inhibitor) potent
ly inhibits mPGES-1 activity with an IC50 value of 20 /zM in 
vitro!' Recent research showed that the MK-886 series of 

inhibitors have promising higher activity for the inducible 
mPGES-1 membrane protein with the lowest IC50 value of 3 
nM? The molecular design of potent mPGES-1 inhibitor 
using MK-886 derivatives might lead the way to the dis
covery of new anti-inflammatory drugs with few side effects. 
Moreover, the study will provide additional knowledge in 
understanding the inhibitory activity of mPGES-1 mem
brane-bound protein.

Hologram Quantitative Structure Activity Relationship 
(HQSAR) study is useful to explore the individual atomic 
contributions to the biological activity. In particular, the 
atomic contribution maps derived from the HQSAR model 
were utilized to understand the vital features of the com
pound^ structural Augment corresponding to the biological 
activity? HQSAR simply utilize information about the atom 
and bond types from the 2D molecular topology of the 
various compounds. The significant advantages of HQSAR 
technique in studying the quantitative structure-activity 
relationships of mPGES-1 inhibitors include no requirement 
for 3D structure of the compounds, shorter computation 
time, simple reproducibility, convenience and the visual 
color codes of atomic contribution maps, In this study, 
HQSAR analysis was employed to MK-886 series of 
inhibitors reported by Riendeau et al^

Methods

Data set The compounds used for the HQSAR analysis 
include MK-886 derivatives obtained from a report publish
ed by Riendeau et al.6 The report consists of 32 compounds 
with IC50 values in the range of0.003 to 10 /M (see Table 1) 
by which both of the training and test set compounds were
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1 CH2(4-Cl-Ph) CO2H SEu 1.600
2 H CO2H SEu 10
3 Me CO2H SEu 10
4 CH2(CH=CH2) CO2H SEu 6.700
5 (CH2)3Ph CO2H SEu 3.200
6 CH2(4-Cl-Ph) CO2Me SEu 7.200
7 CH2(4-Cl-Ph) CONH2 SEu 10
8 CH2(4-Cl-Ph) CO2H Ph 6.400
9 CH2(4-Cl-Ph) CO2H OPh 0.650
10 CH2(4-Cl-Ph) CO2H CH2(4-/Bu-Ph) 0.290
11 CH2(4-Cl-Ph) CO2H CO(2-Me-Ph) 0.900
12 CH2(4-Cl-Ph) CO2H COCH2SB1 0.260
13 CH2(4-Cl-Ph) CO2H COCH2B1 0.250
14 CH2(4-Cl-Ph) CO2H Me 1.100
15 H zPr 4.300
16 H H 3.200
17 F H 2.600
18 Eu H 0.330
19 Ph H 0.600
20 Ph H 0.160
21 H Ph 0.016
22 Cl Ph 0.022
23 F Ph 0.007
24 F 5-(l,3-pyrazinyl) 0.032
25 F 3-pyridinyl 0.012
26 F 2-MeO-Ph 0.005
27 F 2-Cl-Ph 0.004
28 F 2-F-Ph 0.008
29 F 2-MeCO-Ph 0.006
30 F 2-Me-Ph 0.003
31 F 2-Me-Ph 0.033
32 F 2-Me-Ph 0.031

chosen. The training set of compounds were used to derive 
the model whereas, the test set of compounds were used to 
determine the predictability of the model. From these 32 
compounds, only 24 compounds were selected as training 
set and 8 compounds (1, 7, 9, 16, 20, 24, 26 and 31) were 
taken as test set. The IC50 values of the training set were 
converted into pICso (-logICso) and subsequently used as 
dependent variables in the HQSAR analysis. The most 
potent compound from the series which is 3 -[l-(4-chloro- 
benzyl)- 5-(2-fluoro-2,-methyl-biphenyl-4-yl)-1 H-indol-2- 
yl]-2,2-dimethyl-propionic acid (see Figure 1) shows that 
the biaryl rings (A and B) yields the remarkable potency of 
the compound based on in vitro biochemical assay.6

Molecular modeling by HQSAR. Hologram QSAR 
(HQSAR) is a recently developed molecular modeling 
package.5 The basis of HQSAR is from the concept of unity 

hashed binary bit strings called fingerprint7 that employs 
structural fragment to predict the activity of a potent com
pound. Molecular 2D-flngerprints had been a very popular 
tool in analyzing chemical similarity. In HQSAR molecular 
fragment, the 2D-flngerprint is employed in predicting the 
biological activity of compounds. Particularly, HQSAR uses 
molecular hologram as an extended 2D-flngerprint that 
encodes elaborate structural information including stereo
chemistry as well as branched and cyclic molecular frag
ments. HQSAR8 is a robust technique that is fast, reliable 
and does not require alignment of compounds.

Molecular modeling calculations by HQSAR were per
formed using SYBYL9 program version 7.1 on Silicon 
graphics origin300 workstation with IRIX 6.5 operating 
system. In HQSAR approach, the initial step undertaken was 
the generation of molecular holograms from the structure of
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Figure 1. The two-dimensional chemical structure of the model 
compound.

compound, followed by correlation through statistical PLS 
analysis. Molecular holograms were obtained by breaking 
down molecular structures into all possible linear and 
branched fragments of connected atoms. The 2D-flnger- 
prints of the compounds were generated for all the sub
structures with topological descriptors based on fragment 
distinction (atoms, bond and connectivity) and fragment size 
(2-5 atoms). Each unique fragment in a data set was then 
assigned a specific large positive integer by means of a 
cyclic redundancy check algorithm. Each of these integers 
corresponds to a bin in an integer array of 53, 59, 61, 71, 97, 
151, 199,275, 307, 353, 401, and 997 as fixed prime number 
hologram lengths. The computation of molecular holograms 
for a dataset of structures generates data matrix with a 
dimension of R x L. The R represents the number of com
pounds in the training set while L represents the length of the 
molecular hologram. Subsequently, after the molecular 
holograms were created, the statistical calculations were 
employed to finally generate a model inhibitor.

Statistical calculations. Partial least squares (PLS) 
methodology10,11 was employed to determine the relation
ship between the 2D-fingerprint and biological activity of 
the compounds. To derive a HQSAR model, the structural 
features of the descriptors were used as independent 
variables and the pICso values were utilized as dependent 
variables in PLS analyses. Initially, the predictive value of 
the model was determined by leave-one-out (LOO)12 cross
validation. The results from the LOO calculation were 
utilized to obtain the number of components that yield an 
optimally predictive model. Based on the generated model, 
the final calculation of the activity of compounds is 
represented by the mathematical equation below. The 
equation relates the values of molecular hologram bins to the 
corresponding biological activity in each of the compounds 
in the training set.

Activity/ = c。+ &c〃x〃

The representations of the abbreviations in the equation 
are: Activity? represents the biological activity of the 
compound, co is a constant, L is the hologram length, is 
the coefficient for the bin derived from the PLS analysis, and 
X// is the occupancy value of the molecular hologram of 
compound i at position or bin /.

HQSAR contribution maps. The graphical displays of 
the HQSAR computational analysis were shown by color- 
coded structure diagram representing the degree of contri
bution of atoms in linearity with its activity. Poor atomic 
contributions were represented by the colors red, red-orange 
and orange that are located at the red end of the color 
spectrum. Favorable atomic contributions were represented 
by the colors yellow, green-blue and green that are located at 
the green end of the color spectrum. On the other hand, 
intermediate atomic contributions were exhibited in color 
white. By default, HQSAR specifies the maximal common 
structure (MCS) based on the similar backbone present in all 
of the compounds from the training set. MCS is denoted by 
color cyan. It should be noted that the contribution to 
activity of the atoms involved in MCS were ignored since 
the template is common to all structures and thus, does not 
provide a distinguishing feature among the compounds in 
the dataset.

Predictive R squared (己”•爾).To validate the derived 
model from HQSAR, the biological activities of the eight
test set of compounds were predicted using the model 
generated from the training set. The predictive ability of the 
model is expressed by predictive r2 value, which is similar to 
cross-validated r2 (아1) and is calculated by using the formula 
below:

o _ SD-PRESS
pred SD

wherein, SD is the sum of the squared deviation between the 
biological activities of the test set compounds and the mean 
activity of the training set compounds and PRESS is the sum 
of the squared deviations between the observed and the 
predicted activities of the test set compounds.

Results and Discussion

A set of factors such as fragment size, number of frag
ments, atom types (A), bond types (B), atom hybridization 
or connectivity (C), hydrogen bond and donor (H), were 
modified to search the best cross-validation r2 of the model. 
The fragment parameters including A, B, C and H were 
user-selectable flags that provided rules to determine the 
type of unique structural features of the model compound. 
Atom flag provides the ability to differentiate between 
fragments based on differences in element types. Bond flag 
distinguishes between fragments based on differences in 
bond types. Connection flag allows the distinction of 
hybridization state of the atoms in the fragment. Hydrogen 
flag distinguishes whether or not hydrogen atoms are 
included in the fragment.

In the initial HQSAR analysis, the default fragment size of 
4-7 atoms was employed for the different combinations of 
fragment distinction (see Table 2) parameters including atom 
types (A), bond types, (B), connectivity (C), and hydrogen 
(H). Next, the best hologram length (L) and optimum 
number of components (N) were selected based on the PLS 
analysis that gave the least cross-validated standard error
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Table 2. HQSAR analysis for various fragment distinction using 
fragment size (4-7)

Fragment 
distinction

2 
q SEcv SE N Length

A 0.783 0.576 0.894 0.403 3 353
B 0.767 0.571 0.799 0.530 1 199
C 0.816 0.573 0.982 0.179 6 353

AB 0.795 0.547 0.860 0.452 2 257
AC 0.788 0.557 0.864 0.446 2 151
BC 0.861 0.472 0.983 0.165 4 353

ABC 0.870 0.457 0.986 0.149 4 307
AH 0.824 0.546 0.946 0304 5 199
BH 0.739 0.617 0.798 0.543 2 353
CH 0.773 0.575 0.832 0.495 2 307

ABH 0.810 0.582 0.971 0.229 6 353
ACH 0.819 0.539 0.928 0340 4 151
BCH 0.818 0.556 0.939 0321 5 151

ABCH 0.847 0.523 0.968 0.240 6 151
q2 -LOO cross-validated correlation coefficient, SEcv -cross-validated 
standard error, r2 -noncross-validated correlation coefficient, SE - 
noncross-validated standard error. N -number of components, Length - 
hologram length. Fragment distinction: A -atom types, B —bond types, 
C —connectivity, H —hydrogen.

Table 3. HQSAR analysis for the influence of various fragment 
sizes using the best fragment distinction (A/B/C)

Fragment 
size

q2 SEcv SE N Length

2 -5 0.884 0.431 0.976 0.196 4 97
3 -6 0.875 0.448 0.977 0.194 4 97
4 -7 0.870 0.457 0.986 0.149 4 307
5 -8 0.864 0.468 0.979 0.183 4 307
6 -9 0.867 0.474 0.982 0.173 5 151
7 - -10 0.818 0.516 0.905 0372 2 307

q2 -LOO cross-validated correlation coefficient, SEcv -cross-validated 
standard error, r2 -noncross-validated correlation coefficient, SE - 
noncross-validated standard error. N -number of components, Length - 
hologram length.

(SEcv). The PLS analysis was repeated by employing 
different fragment sizes (see Table 3) using the best frag
ment distinction obtained from the step Finally, a
HQSAR model (hologram) was derived from the training 
set.

HQSAR model. A total of 24 structurally similar indoles 
served as training set to establish the model The best 
HQSAR model was generated (descriptors: atoms, connec
tions, bonds; Augment length: 2-5, hologram length: 97). 
The best model taken from the results of PLS analysis in the 
training set yielded (see Table 4) a cross-validated 元 value 
of 0.884 with four optimal components, and non-cross 
validated r value of 0.976 with a standard error of 0.43 L 
The selected model was validated by a test set of 8 
compounds (shown as bold in Table 5), giving satisfactory 
predictive r value of 0.845. Based on the HQSAR model, 
the relationship between the experimental and predicted 
activities of both the training and test set were fairly

Table 4. Statistical indexes of HQSAR model

Dataset q2 SEcv I"2 SE N Length

Training 0.884 0.431 0.976 0.196 4 97
Test 0.901 0.462 0.943 0351 1 151

q2 -LOO cross-validated correlation coefficient, SEcv -cross-validated 
standard error, r2 - noncross-validated correlation coefficient, SE - 
noncross-validated standard error. N -number of components, Length 
-hologram length.

Table 5.
activities

Relationship between experimental and predicted

Compound Experimental pIC50 Predicted pIC50 Residual

Training
2 -1.04 -1.06 -0.02
3 -1.04 -0.96 0.08
4 -0.83 -0.81 0.02
5 -0.51 -0.61 -0.10
6 -0.86 -0.82 0.04
8 -0.81 -0.76 0.05
10 0.54 0.53 -0.01
11 0.05 -0.09 -0.14
12 0.58 0.65 0.07
13 0.60 0.69 0.09
14 -0.04 -0.03 0.01
15 -0.04 -0.03 0.01
17 -0.51 -0.65 -0.14
18 -0.41 -0.39 0.02
19 0.48 0.54 0.06
21 0.80 130 0.50
22 1.80 130 -0.50
23 1.66 1.79 0.13
25 1.50 136 -0.14
27 230 2.07 -0.23
28 2.40 223 -0.17
29 2.10 2.14 0.04
30 2.22 2.20 -0.02
32 1.48 1.68 0.20

Test
1 -0.20 -0.57 -037
7 -1.04 -0.74 030
9 0.19 -0.16 -035
16 -0.63 0.16 0.79
20 0.22 0.28 0.06
24 2.15 1.72 -0.43
26 1.92 1.55 -037
31 2.52 1.67 -0.85

predicted with residual values less than one log unit (see 
Table 5). In Figure 2, the graph represents the correlation 
between the experimental and predicted activities for both 
the training and test set of compounds.

Atomic contribution maps. The various colors of each 
atom reflect the degree of contribution towards the overall 
activity of the compound. The colors reflecting poor (or 
negative) contributions are at the red end of the spectrum 
(red, red orange, and orange), while the colors reflecting 
favorable (positive) contributions are at the green end 
(yellow, green blue, and blue). Atoms colored in white



HQSAR Study of Microsomal Prostaglandin E? Synthase Inhibitors Bull. Korean Chem. Soc. 2006, Vol. 27, No. 10 1535

o
s
으
으
 s

 끄
 4
>

耳
 P

(D흐
 p

은
 d

Experimental activities (plC50)

Figure 2. The plot of experimental and predicted activities (r2 = 
0.9414) for series of MK-886 inhibitors. The bold triangle denotes 
training set while the gray triangle represents test set.

Figure 3. The atomic contribution map for the most potent 
inhibitor to mPGES-1. Green and yellow colors imply highest to 
higher atomic contributions to the activity, respectively. The atoms 
with intermediate contributions are colored white while cyan color 
denotes the backbone structure.

reflect intermediate contributions.
In atomic contributions, the min_contrib and max_contrib 

denote the minimum and maximum PLS coefficients related 
to the biological activity respectively, the colors used are:

red <5/6min contrib

5/6min contrib< red orange <l/2min contrib

l/2min contrib< orange <l/3min contrib

1/3 min contrib< white <l/3max contrib

l/3max contrib< yellow <l/2max contrib

l/2max contrib< green blue <5/6max contrib

5/6max contrib< green

For the system discussed in this work, the values of 
min_contrib and max_contrib were provided after the 
construction of HQSAR model and the colors reflect the 
contributions as below:

red <-0.0526825

-0.0526825V red orange <-0.0316095

-0. 0316095< orange <-0.0210730

-0.0210730V white <0.11352467

0.11352467< yellow <0.170287

0.170287< green blue <0.2881167

0.2881167< green

Figure 4. The intermediate contribution (white color) of the B- 
phenyl ring (refer to Figure 1) to mPGES-1 activity.

(white color) from a sin이e phenyl group attached to the 
backbone structure indole (cyan). In Figure 5, the addition of 
another phenyl moiety to the existing benzene ring attached 
to the backbone indole indicated a high positive contribution 
to activity. When a 3-pyridinyl group was attached into the 
A-phenyl group (see Figures 1 and 6), the color of the 
atomic contribution map has changed from green color 
(favorable activity) into white color (moderate activity). The 
addition of fluorine atom substituent to the B-phenyl ring 
(refer to Figure 1) suggested an enhance activity of the 
compound (see Figure 7). For further bioactivity improve
ment, the modification of atoms at C ring (refer to Figure 1) 
with color white (see Figure 3) might enhance activity. In 
Figure 8, the presence of acyl substituent (COCHzS^Bu) 
yield favorable activity that implies this moiety should be 
maintained for future SAR studies.

Figure 3 depicts the individual atomic contribution of the 
model compound to its molecular bioactivity. It indicates 
that the hydrophobic biphenyl group mainly contributes the 
overall activity of the compound. The condensed rings A 
and B (refer to Figure 1) were colored green and yellow (see 
Figure 3) which indicates positive contribution to the 
activity, suggesting that this is a pharmacologically impor
tant group. The particular atoms of the biphenyl ring with 
positive contributions to activity include C2, C4, C& C7, Cn, 
C12, C14, CI50 and F10. The importance of the hydrophobic 
group (biphenyl) attached to the indole ring is supported by 
the contribution map of other compounds (see Figures 4-5). 
In Figure 4, the contribution map marked a moderate activity

Figure 5. The enhancement to mPGES-1 activity by the presence 
of A-phenyl ring (refer to Figure 1).
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Figure 6. The intermediate activity of 3-pyridinyl attached to the 
B-phenyl ring (refer to Figure 1).

Figure 7. The positive contribution of electronegative fluorine 
atom attached to the B-phenyl ring (refer to Figure 1).

Figure 8. The positive contribution of acyl substituent (yellow 
color) to mPGES-1 activity.

Validation of the HQSAR model using test set To 
verify predictability of the constructed HQSAR model based 
on the training set, 8 compounds were selected as testing set 
for validation. The predicted bioactivities of the test set were 
shown in Table 5. The correlation between the predicted and 
experimental results was depicted in Figure 2 (shown in bold 
trian이es). The PLS analysis on the test set released cross
validated q? value of 0.901 and r2 value of 0.943 with a 
standard error of 0.462. In addition, the predictive r2 value of 
0.845 may suggests a satisfactory model. All of the statis
tical results demonstrate that the HQSAR model is fairly 
reliable with good predictive ability and could be helpful in 
discovering new drugs for inflammation.

Con 이 usion

The HQSAR study provides display of color codes to 
reflect which molecular fragments of the compound may be 
important contributors to the biological activity. The result 
indicates that the biphenyl ring and its substituent are the 
particular types of atoms that contribute to the overall 
activity of the model compound, in agreement with the 
previous experiment.6 The importance of hydrophobic 
biphenyl moiety with favorable activity is exemplified by 
further results of contribution maps. First, by attaching a 
monophenyl instead of biphenyl moiety to the core indole 
has indicated an intermediate contribution to activity. 
Second, the attachment of 3-pyridinyl to A-phenyl moiety 
implied a lesser activity. On the other hand, the attachment 
of an acyl substituent to the 3-indolyl moiety of the model 
might enhance the activity. Based on the overall results, it 
seems reasonable to consider the relevance of the hydro
phobic biphenyl group in mPGES-1 activity. The hydro
phobic group enhances mPGES-1 inhibition that is in 
agreement with the report13 of fatty acid analogues as 
mPGES-1 inhibitors. In addition, the results suggest the 
halogen substitution to the biphenyl ring and the attachment 
of an acyl substituent to the indole moiety would favor 
activity to mPGES-1.
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