• Title/Summary/Keyword: active suspension

Search Result 396, Processing Time 0.027 seconds

ANFIS Intelligence Control of a Semi-Active Suspension System (반능동 현가장치의 ANFIS 지능제어)

  • 이육형;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.144-147
    • /
    • 2000
  • In this paper, ANFIS intelligence control of a semi-active suspension system is investigated. The strength of the ER damper is controlled by a high voltage power supply. This paper deals with a two-degree-of-freedom suspension using the damper with ERF for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFlS control method. Computer simulation results show that the semi-active suspension with ERF damper has good performances of ride quality

  • PDF

Road Adaptive Skyhook Control and HILS for Semi-Active Macpherson Suspension Systems (맥퍼슨형 반능동 현가장치의 노면적응형 스카이훅 제어와 HILS)

  • 박배정;홍금식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.34-44
    • /
    • 2000
  • In this paper, a modified skyhook control for the semi-active Macpherson suspension system is investigated. A new model for the semi-active type suspension, which incorporates the rotational motion of the unsprung mass, is introduced and an output feedback control law using the skyhook control method is derived. The gains in the skyhook controller are adaptively adjusted by estimating the road conditions. Because two vertical acceleration sensors, one for the sprung mass and another for the unsprung mass, are used rather than using the angle sensor for the rotational motion of the control arm, the relative velocity of the rattle space is filtered using the acceleration signals. For testing the control performance, the actual damping force has been incorporated via the hardware-in-the-loop simulations. The performances of a passive damper and a semi-active damper are compared. Simulation results are provided.

  • PDF

COMPLEX STOCHASTIC WHEELBASE PREVIEW CONTROL AND SIMULATION OF A SEMI-ACTIVE MOTORCYCLE SUSPENSION BASED ON HIERARCHICAL MODELING METHOD

  • Wu, L.;Chen, H.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.749-756
    • /
    • 2006
  • This paper presents a complex stochastic wheelbase preview control method of a motorcycle suspension based on hierarchical modeling method. As usual, a vehicle suspension system is controlled as a whole body. In this method, a motorcycle suspension with five Degrees of Freedom(DOF) is dealt with two local independent 2-DOF suspensions according to the hierarchical modeling method. The central dynamic equations that harmonize local relations are deduced. The vertical and pitch accelerations of the suspension center are treated as center control objects, and two local semi-active control forces can be obtained. In example, a real time Linear Quadratic Gaussian(LQG) algorithm is adopted for the front suspension and the combination of the wheelbase preview and LQG control method is designed for the rear suspension. The results of simulation show that the control strategy has less calculating time and is convenient to adopt different control strategies for front and rear suspensions. The method proposed in this paper provides a new way for the vibration control of multi-wheel vehicles.

Frequency Dependent Damping for a Nonlinear Vehicle Active Suspension System (비선형 차량능동현가시스템의 주파수 감응감쇠 특성연구)

  • Kim, J.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.45-54
    • /
    • 2011
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. Among the various suspension systems, an active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. In the process of the linearization for the nonlinear active suspension system, the frequency dependent damping method is used for the exact modelling to the real model. The pressure control valve which is controlled by proportional solenoid is the most important component in the active suspension system. The pressure control valve has the dynamic characteristics with 1st order delay. Therefore, It's necessary to adopt the lead compensator to compensate the dynamics of the pressure control valve. The sampling time is also important factor for the control performances. The sampling time value is proposed to satisfy the system performances. After the modelling and simulation for the pressure control valve and vehicle dynamic, the performances of the vehicle ride quality and the stability are enhanced.

Hydropneumatic Modeling and Dynamic Characteristic Analysis of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 유공압 모델링 및 동특성 해석)

  • Lee, Kwang-Heon;Jeong, Heon-Sul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a hydropneumatic modeling and dynamic analysis of a heavy truck semi-active cabin air suspension system is presented. Semi-active cabin air suspension system improves driver's ride comfort by controlling the damping characteristics in accordance with driving situation. So it can reduce vibration between truck frame and cabin. Semi-active cabin air suspension system is consist of air spring, leveling valve and CDC shock absorber, and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characterics of heavy truck semi-active cabin air suspension system.

A Study on the Design Parameter of Semi-active Control System for the Vehicle Suspension (자동차용 현가장치의 반능동 제어 시스템의 설계파라미터에 대한 연구)

  • Park, Ho;Hahn, Chang-Su;Rhee, Meung-Ho;Roh, Byung-Ok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.97-103
    • /
    • 2002
  • In the determination of control laws of semi-active suspension system, optimal control theory is applied, which used in the design of fully active suspension system and in the performance index sense. Optimal semi-active control laws are designed, and the computer program is developed fur estimation of performance In the time and frequency domain. It is certified that in the semi-active control system, it is desirable to minimize the spring constant and damping coefficient as possible in the given constraints. The effect of performance improvement which is almost equal to fully active type is obtained.

A Study on Adopting Intelligent Control System in Active Suspension Equipment (능동 현가장치에의 지능형 제어시스템 적용에 관한 연구)

  • Park, Jung-Hyen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.287-293
    • /
    • 2007
  • This paper proposed modelling and design method in suspension system design to analyze active suspension equipment by adopting intelligent robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that active suspension system is better than passive spring-damper system in designing suspension equipment. We analyze suspension system with considering location of front-rear wheel and driving velocity, then design robust control system. Numerical example is shown for validity of intelligent control system design in active suspension system.

  • PDF

Study on Active Damper System Applying DC-Motor (DC Motor를 이용한 능동형 댐퍼 시스템에 대한 연구)

  • Lee, Hak-Cheol;Jeon, Jin-Young;Jeong, Young-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.121-123
    • /
    • 2008
  • The suspension systems currently in use can be classified as passive, semi-active and active. The passive suspension systems are the most commonly used due their low price and high reliability. However, this system cannot assure the desired performance form a modern suspension system. An important improvement of suspension performance is achieved by the active systems. This paper treats active damper system and applying DC-Motor. In this system, all the energy for active control is supplied from the damper, which regenerates energy. And simulations by sky-hook control.

  • PDF

Sliding Mode Control for Pneumatic Active Suspension Systems of a One-wheel Car Model

  • Yoshimura, Toshio;Kimura, Ryota
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1152-1157
    • /
    • 2005
  • This paper is concerned with the construction of an improved sliding mode control for the active suspension system of a one-wheel car model subject to the excitation from a road profile. The active control is composed of the equivalent and the switching controls where an improved sliding surface is proposed. The active control force is generated by operating a pneumatic actuator due to the control signal that constructed by measuring the state variables of the car model and by estimating the excitation from the road profile using the VSS observer. The experimental result indicates that the proposed active suspension system is relatively effective in the vibration suppression of the car model.

  • PDF

Fuzzy control designed GA of a electro-rheology fluid damper (전기유변유체댐퍼의 유전자알고리즘에 의해 설계된 퍼지 제어)

  • 배종인;박명관;주동우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.438-441
    • /
    • 1997
  • This paper studies a semi-active suspension with ER damper controlled Fuzzy Net Controller designed GA(Genetic Algorithm). Apparent viscosity of ERF(Electro-Rheological Fluid) can be changed rapidly by applying electric field. Semi-active suspension for ground vehicles are expected to improve ride quality with less vibration. This paper deals with a two-degree -of-freedom suspension using the ER damper for a quarter vehicle system. In this paper, the GA is applied for generating Fuzzy Net Controllers. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF