• Title/Summary/Keyword: active priority

Search Result 148, Processing Time 0.024 seconds

Performance Analysis of a Congestion cControl Mechanism Based on Active-WRED Under Multi-classes Traffic (멀티클래스 서비스 환경에서 Active-WRED 기반의 혼잡 제어 메커니즘 및 성능 분석)

  • Kim, Hyun-Jong;Kim, Jong-Chan;Choi, Seong-Gon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.125-133
    • /
    • 2008
  • In this paper, we propose active queue management mechanism (Active-WRED) to guarantee quality of the high priority service class in multi-class traffic service environment. In congestion situation, this mechanism increases drop probability of low priority traffic and reduces the drop probability of the high priority traffic, therefore it can improve the quality of the high priority service. In order to analyze the performance of our mechanism we introduce the stochastic analysis of a discrete-time queueing systems for the performance evaluation of the Active Queue Management (AQM) based congestion control mechanism called Weighted Random Early Detection (WRED) using a two-state Markov-Modulated Bernoulli arrival process (MMBP-2) as the traffic source. A two-dimensional discrete-time Harkov chain is introduced to model the Active-WRED mechanism for two traffic classes (Guaranteed Service and Best Effort Service) where each dimension corresponds to a traffic class with its own parameters.

Signal Timing and Intersection Waiting Time Calculation Model using Analytical Method for Active Tram Signal Priority (해석적 방법을 이용한 능동식 트램 우선신호의 신호시간 및 교차로 대기시간 산정 모형)

  • Jeong, Youngje;Jeong, Jun Ha;Joo, Doo Hwan;Lee, Ho Won;Heo, Nak Won
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.410-420
    • /
    • 2014
  • This research suggests a new tram signal priority model which determines signal timings and tram intersection waiting time using analytical method. This model can calculate the signal timings for Early Green and Green Extension among the active tram signal priority techniques by tram detection time of upstream detector. Moreover, it can determine the tram intersection waiting time that means tram intersection travel time delay from a vantage point of tram travel. Under the active tram signal priority condition, priority phases can bring additional green time from variable green time of non-priority phases. In this study, the signal timing and tram intersection waiting time calculation model was set up using analytical methods. In case studies using an isolated intersection, this study checks tram intersection waiting time ranged 12.7 to 29.4 seconds when variable green times of non-priority phases are 44 to 10 seconds under 120 seconds of cycle length.

A Study on Active Priority Control Strategy for Traffic Signal Progression of Tram (트램의 연속통행을 위한 능동식 우선신호 전략 연구)

  • Lee, In-Kyu;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.25-37
    • /
    • 2014
  • Recently, our local governments are conducting the introduction of tram system because it is recognized as an effective public transit that can solve a traffic jam in downtown, decreasing public transit share and environmental issues in world wide cities. We developed the Active Priority Control Strategy to efficiently operate a tram in our existing traffic signal system. This study organized the tram system for operating the Active Priority Signal Control, developed the algorithm that calculates a tram-stop dwell time in order to pass the downstream intersection without a stop. The dwell time is determined by arrival time at tram-stop, downstream signal time, and the location of a opposite tram, it can be reduced by choosing the optimal one among Signal Priority Controls. Using the VISSIM and VISVAP model, we conducted a simulation test for the city of Chang-won that it is expected to install a tram system. It showed that a developed signal control strategy is effective to prevent a tram's stop in intersections, to reduce a tram's travel time.

Signal Timing Calculation Model of Transit Signal Priority using Shockwave Theory (충격파 이론을 이용한 대중교통 우선신호의 신호시간 산정모형)

  • Park, Sang Sup;Cho, Hye Rim;Kim, Youngchan;Jeong, Youngje
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.897-905
    • /
    • 2015
  • This research suggested the traffic signal calculation model of active transit signal priority using a shockwave model. Using this signal priority timing optimization model, the shockwave area is computed under the condition of Early Green and Green Extension among active transit signal priority techniques. This study suggested the speed estimation method of backward shockwave using average travel time and intersection passing time. A shockwave area change is calculated according to signal timing change of transit signal priority. Moreover, this signal timing calculation model could determine the optimal signal priority timings to minimize intersection delay of general vehicles. A micro simulation analysis using VISSIM and its user application model ComInterface was applied. This study checked that this model could calculate the signal timings to minimize intersection delay considering saturation condition of traffic flow. In case studies using an isolated intersection, this study checked that this model could improve general vehicle delay of more over ten percentage as compared with equality reduction strategy of non-priority phases. Recently, transit priority facilities are spreading such as tram, BRT and median bus lane in Korea. This research has an important significance in that the proposed priority model is a new methodology that improve operation efficiency of signal intersection.

Optimal Signal Times for Active Bus Signal Priority on Median Bus Lane Using Deterministic Delay Model (중앙버스전용차로상에서 결정적 지체모형을 이용한 능동형 버스우선신호의 최적 신호시간 산출방안)

  • Kim, Tae-Woon;Jeong, Young-Je;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.15-25
    • /
    • 2014
  • Bus signal priority is a name for various techniques to speed up bus public transport services at intersections with traffic signals. In this study propose methodology to optimize signal times for Early green, Green extension out of the active bus signal priority using deterministic delay model in isolated intersection on median bus lane. Fluctuation is found in the vehicle delay and person delay in the event that using this methodology redistributed to green time and checking slack green time is correct value by sensitivity analysis. As a result of the study, car delay is increased a little and person delay is decreased. As a result of slack green time sensitivity, delay is not much in it if variation of slack green time under 30%. But this methodology effectiveness is under claimed capacity if variation of slack green time over 30%.

Active and Reactive Power Control Model of Superconducting Magnetic Energy Storage (SMES) for the Improvement of Power System Stability

  • Ham, Wan-Kyun;Hwang, Sung-Wook;Kim, Jung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device. Furthermore, an optimal priority scheme is proposed for the combination of active and reactive power control to be able to stabilize power transient swings.

Analysis of Performance for Computer System using BCMP Queueing Net work with Priority Levels (우선순위를 고려한 BCMP 큐잉 네트워크를 이용한 컴퓨터 시스템의 성능 분석)

  • Park, Dong-Jun;Lee, Sang-Hun;Jeong, Sang-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.191-199
    • /
    • 1996
  • In this paper, We assume that the closed computer system model composed of multiprocessor system is analyzed by BCMP queueing network theory with priority levels. In this system that contains terminals, processors and I/O devices, We show maximum throughput and the number of active terminals in the optimum multiprogramming levels. It is compared the performance with the other. In the result, it is obtained the optimum number of processors and active terminals. Therefore, the system model consisted of the optimum number of processor and multiprogramming level m is analyzed by the servers with a priority level. Each server is applied to the type of server which is characterized terminal, processor I/O device etc.. This model is analyzed by the server with a probability ditribution. Ideal state is proposed by the modeling for priority levels. Finally, we try to increase the performance in overload system.

  • PDF

A Low-Complexity ML Detector for Generalized Spatial Modulation Based on Priority (GSM을 위한 우선순위 기반 저복잡도 ML 검출 기법)

  • Lee, Man Hee;Shin, Soo Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.731-738
    • /
    • 2017
  • In this paper, we proposed a modified ML detector for generalized spatial modulation which is a method among Multiple-input Multiple-output. This proposed method detects signal applying modified channel statement information based on priority. Complexity in conventional methods increases as increasing the number of active antennas. To solve this problem, we proposed a new ML method using static channel information decided by the number of transmit antennas and the number of receive antennas. This method detects active antennas one by one through priority. The proposed method has proved benefit on complexity compared with conventional method through simulations. When the number of transmit antennas is equal to 10, there is approximately 45% complexity reduction.

Multiple Target Management of Air-to-Air mode on Airborne AESA Radar (항공기 탑재 AESA 레이다의 공대공 모드 다표적 관리 기법)

  • Yong-min Kim;Ji-eun Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.580-586
    • /
    • 2023
  • AESA radar is able to instantaneously and adaptively position and control the beam, and this enables to greatly improve multi-target tracking capability with high accuracy in comparison to traditional mechanically-scanned radar system. This paper is primarily concerned with the development of an efficient methodology for multi-target managenent with the context of multi-target environment employing AESA radar. In this paper, targets are stratified into two principal categories: currently displayed targets and non-display targets, predicated upon their relative priority. Displayed targets are subsequently stratified into TOI (target of interest), HPT (high priority target), and SAT (situational awareness target), based on the requisite levels of tracking accuracy. It also suggests rules for determining target priority management, especially in air-to-air mode including interleaved mode. This proposed approach was tested and validated in a SIL (system integration lab) environment, applying it to AESA radars mounted on aircraft.