• Title/Summary/Keyword: active pressure

Search Result 954, Processing Time 0.023 seconds

A Study on Gerotor Design with Optimum Tip Clearance for Low Speed High Torque Gerotor Hydraulic Motor (저속 고토오크 제로터 유압모터의 최적 이 끝 틈새를 갖는 제로터 설계 연구)

  • Seo, J.S.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.119-126
    • /
    • 2006
  • Gerotor hydraulic motor is widely used in hydraulic systems due to its low speed, high torque output and compactness in rotational direct driving of a heavy weight. Gerotor is a Planar mechanism consisted of a pair of rotor and circular teeth of stator assembly which forms a closed space, so called a chamber. The motion of rotor relative to the circular tooth is produced by the pressure difference of hydraulic operating fluid between the adjacent chamber. As all active contact points of rotor and circular teeth are subjected to very high sliding friction, a reduction in the performance of the gerotor hydraulic motor can not be avoided. Therefore, the core design parameters of gerotor profile used in hydraulic motors is to minimize a friction force by high contact stresses. The analytical design method of gerotor profile, based on envelope of a family of curves, is proposed. In this study, the influence of the tip clearances on three critical contact points between rotor and circular teeth of stator assembly has been explored by experimental data in this paper. At the same time a improvement method to reduce the friction force is proposed and the tip clearances on three critical points for getting an optimum gerotor profile are also analyzed.

  • PDF

Tunneling magnetoresistance in ferromagnetic tunnel junctions with conditions of insulating barrier preparation (부도체층 제작조건에 따른 강자성 터널접합의 투과자기저항 특성 연구)

  • 백주열;현준원
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.61-66
    • /
    • 1999
  • The Spin-dependent tunneling magnetoresistance (TMR) effect was observed in $NiFe/Al_2O_3$/Co thin films. The samples were prepared by magnetron sputtering in a system with a base pressure of $3\times10^{-6}$Torr. the insulating $Al_2O_3$layer was prepared by r.f. plasma oxydation method of a metallic Al layer. The ferromagnetic and insulating layers were deposited through metallic masks to produce the cross pattern form. The junction has an active area of $0.3\times0.3\textrm{mm}^2$ and the $Al_2O_3$layer is deposited through a circular mask with a diameter of 1mm. It is very important that insulating layer is formed very thinly and uniformly in tunneling junction. The ferromagnetic layer was fabricated in optimum conditions and the surface of that was very flat, which was observed by AFM. Tunneling junction was confirmed through nonlinear I-V curve. $NiFe/Al_2O_3$/Co junction was observed for magnetization behavior and magnetoresistance property and magnetoresistance property is dependent on magnetization behavior and magnetoresistance property and magnetoresistance property is dependent on magnetization behavior of t재 ferromagnetic layer. The maximum magnetoresistance ratio was about 6.5%.

  • PDF

Hardness and adhesion of the reactively sputtered Zr-ZrN on the stainless steel(SUS304) and tool steel(SKH9) (스테인레스와 공구강 위에 스퍼터링된 Zr-ZrN 코팅층의 경도 및 밀착성에 대한 연구)

  • 예길촌;신현준;권식철;백원승
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.316-326
    • /
    • 1993
  • Adhesion and hardeness are the most important properties of a hard coated layer which is applied to wear-resistant devices. Zr/ZrN layer was deposited on tool steel(SKH9) and stainless steel(SUS304) by a re-active D.C. magnetron sputtering technique and their microhardness and adhesion strength were measured for the films processed by changing the partial pressures of $N_2$ gas (4~10$\times$$10^{-4}$mbar) and the substrate bias voltage(0~250V). The adhesion strength was evaluated by acoustic signals through the scratch-test with the incremental applied load. As the partial pressure of $N_2$ gas and the substrate bias voltage were increased, the adhesion strength of tool steel was observed to be stronger than that of the stainless steel. The adhesion strength was generally, observed to decrease with the same tendency regardless of the kinds of substrates. The adhesion strength of tool steel was increased more and more strongly than that of stainless steel as heat-treated temperature was increased. The strength of tool steel was appeared to be high adhesion strength at $400^{\circ}C$. From the failure mode of the film during the scratch adhesion test, the cohesive failure was observed to be obvious and the adhesive failure in a minor portion in the Zr/ZrN doublelayer regardless of the kinds of substrates.

  • PDF

A Brief Study on Smoke Suppression Effects by Sprinkler Spray System (스프링클러설비에 의한 연기제어효과 고찰)

  • Cha, Jong-Ho;Yoon, Myung-O;Choi, Chun-Bae;Lee, Sun-Kyung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.560-565
    • /
    • 2006
  • Sprinkler system is the most effective fire suppression with high confidence among active fire extinguishing systems. According to the installation of the related system on buildings, more separation area of fire protection can be considered to the fire protection design, and also lower differential pressure (12.5 Pascal) is permitted on lobby of fire escape stairs and emergency elevator (25 Pascal shall be considered for none sprinkler system) with economic factor. More details will be handled on the related studies.

  • PDF

A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma (수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.

The paradox of feminism and beautification of outward appearance - Examining the Refund Sisters - (페미니즘과 외모 꾸미기 패러독스 - 환불원정대를 중심으로 -)

  • Jang, Eun Su;Lee, Soon Jae
    • The Research Journal of the Costume Culture
    • /
    • v.29 no.5
    • /
    • pp.651-664
    • /
    • 2021
  • The purpose of this study is to first examine the relationship between appearance-enhancing beauty practices and feminism, and secondly, to analyze public images of contemporary women using this paradigm. Through the lens of this relationship, we present a literature review and empirical research focusing on the evolution of public image trends among girl groups, with special attention to the Refund Sisters, a South Korean supergroup currently drawing mainstream attention as female icons. The scope of analysis includes girl groups dating from the 1990's to the year 2020 and photos of the Refund Sisters. Our results indicate that firstly, free sexual expression is evident based on active use of sexuality; images contain bold demonstrations of females desire, expressions previously considered taboo. Secondly, we note deviations from more standardized female images, unique adornment of outward appearance, and rejection of normative female images through freer forms of self-presentation. Lastly, there is greater cultural and racial diversity, rejection of modern race and gender binaries, and increased representation of queer identities. However, the relationship between appearance-enhancing beauty practices and feminism is sometimes considered paradoxical, with some arguing that beautifying one's outward appearance is a compulsory strategy and that it should be rejected in order to resist aesthetic pressure.

Safety Improvement of Military Primary Lithium Batteries by New Protection Circuit for Low Current System (신규 보호회로 적용을 통한 저전류 장비용 군 리튬전지 안전성 개선)

  • Youn, Seong Gi;Cho, Yu Seup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.256-261
    • /
    • 2019
  • The use of military lithium batteries in this field accelerates the generation of internal pressure because the active materials, lithium and the electrolyte, react to form sulfur dioxide gas. This also reduces the amount of electrolyte. In this condition, batteries can 'vent' or 'explode' especially when completely discharged. Such venting and explosion can be regarded as a safety accident, as toxic gases and shrapnel are ejected from the batteries which can harm the user. A DTaQ was carried out in 2017 as a quality problem solution project to solve this safety issue. A protection circuit was thereby developed, which included a micro controller unit (MCU) which can stop battery usage when in an over-discharging state by sensing its low-voltage condition. In 2018, this concept was expanded to lithium batteries for the remote controlled ammunition system. This paper reports results of the improved performance.

A Study on the Characteristics of Ni/Ce0.9Gd0.1O2-x and Cu/Ce0.9Gd0.1O2-x Catalysts for Methanol Steam Reforming Synthesized by Solution Combustion Process (용액연소법으로 합성한 Ni/Ce0.9Gd0.1O2-x와 Cu/Ce0.9Gd0.1O2-x 촉매의 메탄올 수증기 개질 특성 연구)

  • LEE, JUNGHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Methanol is a liquid fuel which could also be produced from renewable energy sources and has appreciably high energy density. In this work, we investigated the application of $Ce_{0.9}Gd_{0.1}O_{2-x}$ supported Cu and Ni catalysts for hydrogen production via methanol steam reforming. Catalysts were synthesized by solution combustion synthesis. The prepared catalysts with various active materials and Cu loading amounts were tested in a reactor at $200-300^{\circ}C$, 0-5 barg range and steam to methanol molar ratio was 1.5. The catalytic properties of Cu and Ni were compared, and the catalytic performance was shown to depend on the amounts of metal loading and operating conditions such as reaction temperature and pressure.

Long-Term Experiments for Demonstrating Durability of a Concrete Barrier and Gas Generation in a Low-and Intermediate-Level Waste Disposal Facility

  • Kang, Myunggoo;Seo, Myunghwan;Kim, Soo-Gin;Kwon, Ki-Jung;Jung, Haeryong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.267-270
    • /
    • 2021
  • Long-term experiments have been conducted on two important safety issues: long-term durability of a concrete barrier with the steel reinforcements and gas generation from low-and intermediate-level wastes in an underground research tunnel of a radioactive waste disposal facility. The gas generation and microbial communities were monitored from waste packages (200 L and 320 L) containing simulated dry active wastes. In the concrete experiment, corrosion sensors were installed on the steel reinforcements which were embedded 10 cm below the surface of concrete in a concrete mock-up, and groundwater was fed into the mock-up at a pressure of 2.1 bars to accelerate groundwater infiltration. No clear evidence was observed with respect to corrosion initiation of the steel reinforcement for 4 years of operation. This is attributed to the high integrity and low hydraulic conductivity of the concrete. In the gas generation experiment, significant levels of gas generation were not measured for 4 years. These experiments are expected to be conducted for a period of more than 10 years.

Ameliorative Potential of Rengyolone Against CCI-induced Neuropathic Pain in Rats

  • Lee, Gil-Hyun;Hyun, Kyung-Yae
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.310-318
    • /
    • 2020
  • The sciatic nerve is the largest nerve among the peripheral nerves, and the damage to the sciatic nerve is caused by mechanical and physical pressure. This is an important disease that consumes a lot of time and money in the treatment process. Among them, research on relieving nerve pain caused by damage to the peripheral sciatic nerve has been made efforts to prevent and treat this disease through various methods such as drugs, natural products, electrical stimulation, exercise therapy, and massage. Existing treatments are not very effective in neurological pain, and countermeasures are needed. Forsythia Fructus, used in this study, has been used as a therapeutic agent for infectious diseases and a pain reliever for cancer from the past, and in past studies, it has been known to properly control the inflammatory response. In this study, rengyolone, a physiologically active substance of Forsythiae Fructus, was administered to rats that caused chronic left nerve pain to verify the pain relief effect. As a result of the experiment, it was found that mechanical pain and cold stimulation pain were significantly reduced in the rengyolone-treated group compared to the non-administered group. In addition, it was found that nerve growth factor (NGF) mRNA expression was significantly reduced and Cyclin-dependent kinase 2 (Cdc2) expression was increased in the rengyolone administration group. This increase in NGF expression is thought to be related to rengyolone's anti-inflammatory regulatory mechanism. It is expected that the reduced NGF was directly involved in pain relief.