• Title/Summary/Keyword: active inverter

Search Result 467, Processing Time 0.028 seconds

Static Switch Control of UPS with Active Filter Function (능동 필터 기능을 갖는 무정전전원장치의 정적 스위치 제어)

  • Hong, Hyun-Mun;Jeon, B.S.;Kim, J.G.;Lee, S.H.;Kim, J.S.;Min, Y.G.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.406-408
    • /
    • 2005
  • In this literature, when the utility line is normal, the Off-Line UPS operates as an active power filter to compensate the reactive power from a load, and when the utility line is in outage, the On-Line UPS opuates as in single phase inverter to supply an active and reactive power to the load. An additional static switch in UPS was used to decrease an transient state during these mode changes. And the result shows that the transient state disappeared.

  • PDF

Comparison and Study of Active and Hybrid Power Filters for Compensation of Grid Harmonics

  • Gutierrez, Bryan;Kwak, Sang-Shin
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1541-1550
    • /
    • 2016
  • This paper presents a theoretical analysis and comparisons of active power filter (APF) and hybrid power filter (HPF) systems, given terminal constraints of harmonic compensations in nonlinear loads. Despite numerous publications for the two types of filters, the features and differences between them have not been clearly explained. This paper presents a detailed analysis of the operations of a HPF inverter along with those of passive power filters (PPFs). It also includes their effects on the power factor at the grid. In addition, a theoretical analysis and a systematic comparison between the APF and HPF systems are addressed based on system parameters such as the source voltage, output power, reactive component size, and power factor at the grid terminals. The converter kVA ratings and dc-link voltage requirements for both topologies are considered in the presented comparisons

Operational Analysis of Energy Storage System to Improve Performance of Wind Power System with Induction Generator (농형유도 풍력발전기의 성능개선을 위한 에너지 저장장치의 동작특성 분석)

  • Shim, Myong-Bo;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1045_1046
    • /
    • 2009
  • This paper presents an active and reactive power compensator for the wind power system with squirrel-cage induction generator. The developed system is able to continuously compensate the active and reactive power. The 3-phase inverter operates for the compensation of reactive power, while the DC/DC converter with super-capacitors operates for the compensation of active power. The proposed compensator can be expected that developed system may be used to compensated the abrupt power variation due to sudden change of wind speed or sudden power-drop by tower effect. It can be also applied for the distributed generation and the Micro-Grid.

  • PDF

3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation (순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • 한석우;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

Photovoltaic Module Integrated Converter based on Active Clamp Current-fed Half-Bridge Converter (능동 클램프 전류원 하프 브릿지 기반 태양광 모듈 집적형 전력변환장치)

  • Park, Jeong-Kyu;Jung, Hoon-Young;Ji, Young-Hyok;Lee, Tae-Won;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.563-564
    • /
    • 2010
  • In this paper, photovoltaic module integrated converter (MIC) based on active clamp current-fed half-bridge converter is proposed. The converter stage operates in zero-voltage condition using active clamp technique. The theoretical study and circuit design for proposed inverter are confirmed with PSIM simulator.

  • PDF

A Novel Hybrid Active Power Filter with a High-Voltage Rank

  • Li, Yan;Li, Gang
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.719-728
    • /
    • 2013
  • A novel hybrid active power filter (NHAPF) that can be adopted in high-voltage systems is proposed in this paper. The topological structure and filtering principle of the compensating system is provided and analyzed, respectively. Different controlling strategies are also presented to select the suitable strategy for the compensation system. Based on the selected strategy, the harmonic suppression function is used to analyze the influence of system parameters on the compensating system with MATLAB. Moreover, parameters in the injection branch are designed and analyzed. The performance of the proposed NHAPF in harmonic suppression and reactive power compensation is simulated with PSim. Thereafter, the overall control method is proposed. Simulation analysis and real experiments show that the proposed NHAPF exhibits good harmonic suppression and reactive power compensation. The proposed compensated system is based on the three-phase four-switch inverter, which is inexpensive, and the control method is verified for validity and effectiveness.

A Study on The Three-Phase Active Power Filter Using Voltage-Source PWM Converter (전압형 PWM 컴버터를 이용한 3상 능동 전력 필터에 관한 연구)

  • 박민호;김한성;최규하;이제필
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.5
    • /
    • pp.370-379
    • /
    • 1989
  • This paper describes a three-phase active power filter using voltage-source PWM converter, which can eliminate the harmonics and compensate the reactive power in the ac sides of 6-pulse rectifier. The active filter consists of three-phase PWM inverter and a capacitor, and the hysteresis control technique is used to make the compensating current close to the existing harmonic current and also to improve the response of the filter with simple control circuit. As a result the compensated ac line current becomes sinusoidal and the input power factor is improved roughly to unity.

Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid (마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘)

  • Moon, Dae-Seong;Seo, Jae-Jin;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

Voltage THD Mitigation of Power Distribution System using Z-Source Active Power Filter with a Fuel Cells Source (연료전지 전원을 갖는 Z-소스 능동전력필터에 의한 장거리 배전선로의 전압 THD 저감)

  • Jung, Young-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2161-2166
    • /
    • 2008
  • This paper deals with a Z-source active power filter(Z-AFU) for mitigation voltage THD(total harmonic distortion) due to voltage harmonic propagation(amplification) in 6.6kv power distribution system. Bus voltage harmonic signal is detected by 60Hz butterworth BPF(band pass filter). As an ESS(energy storage system) of the proposed system, PEM fuel cells(Ballard NEXA, 1.2kw) is employed. Test results based on PSIM(power electronics simulation tool) validate the proposed approach.

Improved Active Power Filter Performance Based on an Indirect Current Control Technique

  • Adel, Mohamed;Zaid, Sherif;Mahgoub, Osama
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.931-937
    • /
    • 2011
  • This paper presents a method for the performance improvement of a shunt active power filter (SAPF) using the indirect current control (ICC) scheme. Compared to the conventional direct current control (DCC) scheme, the ICC gives better performance with a lower number of sensors. A simplified and efficient control algorithm using a low cost Intel 80C196KC microcontroller is implemented using only two current sensors for the source current and one voltage sensor for the DC-link voltage of the SAPF circuit. The objective is to eliminate harmonics and to compensate the reactive power produced by non-linear loads such as an uncontrolled rectifier feeding an inductive load. The APF is realized using a three phase voltage source inverter (VSI) with a dc bus capacitor. Experimental results are presented to prove the better performance of the ICC method over the DCC one.