• 제목/요약/키워드: active food packaging

검색결과 39건 처리시간 0.025초

식품보존제를 이용한 항균지 제조 (Manufacture of Antimicrobial Paper Using Food Preservative)

  • 이진호;이장호;박종문
    • 펄프종이기술
    • /
    • 제33권2호
    • /
    • pp.81-86
    • /
    • 2001
  • The functions of food packaging are not only prevention from physical damage and loss during carrying and transportation, but also extension of shelf-life by adding antimicrobial substrate in packaging materials. Consumption of active packaging is gradually increasing. With different dosage of potassium sorbate(P.S.), the food preservative agent, antimicrobial papers were made by internal and external application of starch. The antimicrobial action of the paper was analyzed by the halo test and the shake flask method. The mechanical properties and strength were also measured. Antimicrobial papers adding P.S. showed higher values in tensile index than adding starch. The antimicrobial paper using starch showed similar microbe decreasing rate as that using P.S. Though microbe decreasing rate was 21.9%, it showed possibility to make antimicrobial paper using food preservative.

  • PDF

메타중아황산나트륨을 다공성물질에 함침하여 제조한 비금속류 산소제거제의 산소제거속도 향상 및 식품 포장 적용 연구 (Enhancing the Oxygen Removal Rate for Its Application in Food Packaging Through the Impregnation of Porous Materials with the Non-metallic Oxygen Scavenger Sodium Metabisulfite)

  • 정수연;이현규;유승란
    • 한국포장학회지
    • /
    • 제30권1호
    • /
    • pp.43-51
    • /
    • 2024
  • The addition of oxygen scavengers to food products helps to reduce oxygen exposure, thereby mitigating deterioration, including changes in taste, odor, and color, as well as inhibiting microbial growth. Despite the advantages of the existing non-metallic oxygen removal materials in terms of safety for the human body and suitability for use in microwave ovens, their utilization has been limited due to their slow reaction initiation speed. Therefore, in the current study, sodium metabisulfite was impregnated into various porous media, including halloysite nanoclay, activated carbon, montmorillonite, and silica gel. The oxygen scavenger, produced by impregnating silica gel with sodium metabisulfite, demonstrated a 425% improvement in the initial oxygen removal rate compared to pure sodium metabisulfite. Additionally, sachets containing an oxygen-removing composition with an enhanced oxygen removal rate effectively decreased the oxygen concentration to less than 0.5% on the third day of storage in apple packaging, without elevating carbon dioxide levels. Moreover, it proved effective in preventing the browning of the apple surface. Therefore, the SM/SG oxygen-removal composition can be effectively applied to active food packaging by controlling the oxygen concentration within the packaging.

Development of Plastic/Gelatin Bilayer Active Packaging Film with Antibacterial and Water-Absorbing Functions for Lamb Preservation

  • Shijing Wang;Weili Rao;Chengli Hou;Raheel Suleman;Zhisheng Zhang;Xiaoyu Chai;Hanxue Tian
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1128-1149
    • /
    • 2023
  • In order to extend the shelf life of refrigerating raw lamb by inhibiting the growth of microorganisms, preventing the oxidation of fat and protein, and absorbing the juice outflow of lamb during storage, an active packaging system based on plastic/gelatin bilayer film with essential oil was developed in this study. Three kinds of petroleum-derived plastic films, oriented polypropylene (OPP), polyethylene terephthalate, and polyethylene, were coated with gelatin to make bilayer films for lamb preservation. The results showed significant improvement in the mechanical properties, oxygen, moisture, and light barriers of the bilayer films compared to the gelatin film. The OPP/gelatin bilayer film was selected for further experiments because of its highest acceptance by panelists. If the amount of juice outflow was less than 350% of the mass of the gelatin layer, it was difficult for the gelatin film to separate from lamb. With the increase in essential oil concentration, the water absorption capacity decreased. The OPP/gelatin bilayer films with 20% mustard or 10% oregano essential oils inhibited the growth of bacteria in lamb and displayed better mechanical properties. Essential oil decreased the brightness and light transmittance of the bilayer films and made the film yellow. In conclusion, our results suggested that the active packaging system based on OPP/gelatin bilayer film was more suitable for raw lamb preservation than single-layer gelatin film or petroleum-derived plastic film, but need further study, including minimizing the amount of essential oil, enhancing the mechanical strength of the gelatin film after water absorption.

Anthocyanin - A Natural Dye for Smart Food Packaging Systems

  • Singh, Suman;Gaikwad, Kirtiraj K.;Lee, Youn Suk
    • 한국포장학회지
    • /
    • 제24권3호
    • /
    • pp.167-180
    • /
    • 2018
  • Interest in the use of smart packaging systems for food products has increased in recent years. Therefore, food researchers are focusing on the development of new indicator based smart packaging technologies by using anthocyanin-based natural dye. Anthocyanins are one of the plant constituents known as flavonoids and responsible for the bright and attractive orange, red, purple, and blue colors of most fruits, vegetables, flowers, and some cereal grains. Indicators of natural dyes such as anthocyanins could express the quality and shelf life of perishable food products. However, the sensitivity and stability for their use in smart food packaging should be established to reach the market proposals. This review article focuses on recent studies related to use of natural dyes based on anthocyanin for smart food packaging applications. This study offers valuable insight that may be useful for identifying trends in the commercialization of natural dyes or for identifying new research areas. This review also provides food and packaging scientists with a thorough understanding of the benefits of anthocyanin-based natural dyes for shelf life indicator when applied to package material specific foods and hence can assist in accelerating commercial adoption.

Effects of Oxygen Scavenging Package on the Quality Changes of Processed Meatball Product

  • Shin, Yang-Jai;Shin, Joong-Min;Lee, Youn-Suk
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.73-78
    • /
    • 2009
  • Processed meatball products were packaged in a passive package without oxygen scavenger as 1 control and 3 active packages of which have PP-based oxygen scavenger master batch materials (OSMB) of 40, 80, and 100%(w/w) in the middle layer and stored at 23 and $30^{\circ}C$ up to 9 months. Quality changes of packaged products were evaluated by measuring the oxygen concentration of the headspace in containers, thiobarbituric acid (TBA), color, and flavor. The oxygen concentration of the package having 100% OSMB was lower than those of 40 and 80%. The color changes and TBA values of the meat ball in the package containing 100% OSMB were the least among the treatments. Using principal component analysis (PCA), the control showed more flavor change than the packages containing oxygen scavenger. As a result, all active packages could extend the shelf life of the meatball products compared with that of the passive package.

유통과정에서 생표고버섯에 대한 Active 마스터 포장 시스템의 적용 효과 (Effect of Active Master Packaging System on Preservation of Fresh Shiitake Mushrooms in Supply Chain)

  • 안덕순
    • 한국식품영양과학회지
    • /
    • 제45권3호
    • /
    • pp.402-408
    • /
    • 2016
  • 생표고버섯 생산 농가에서 일반 판매처까지 보관 및 유통 단계를 거치면서 변화하는 온도 조건에 노출된 제품의 품질을 향상하기 위해 1차 개별포장과 2차 포장을 결합한 active 마스터 포장 시스템을 적용하였다. 외부 2차 포장에는 이산화탄소 흡수제인 $Ca(OH)_2$와 수분 흡수제인 고흡수성 고분자를 sachet 형태로 만들어 포장에 적용했다. 낮은 온도로 유지되는 저장단계에서는 1차 개별포장과 2차 포장의 결합한 형태로 수송 및 유통되고, 높은 온도에 노출되는 판매단계에서는 2차 포장을 해체한 후 판매가 진행되도록 하였다. 판매단계에서 2차 포장을 해체하면 온도 상승으로 인한 호흡 증가로 포장 내 산소 고갈과 높은 농도의 이산화탄소 축적을 막을 수 있으며, 급격한 생리장해를 억제할 수 있다. 수송 및 저장 단계에서 포장 내 기체조성과 온습도를 측정하고, 판매단계에서 포장을 개봉하여 생표고버섯의 품질을 측정하였다. 관행적인 방법인 통기성 천공 포장을 대조구로 하여 같은 조건으로 수송 및 유통, 판매를 통해 처리구 포장의 품질과 비교하였다. 이산화탄소 흡수제인 $Ca(OH)_2$와 수분 흡수제인 고흡수성 고분자를 봉지 형태로 만들어 함입시킨 active 마스터 포장 시스템은 유통 저장 단계에서 포장의 기체 이동과 이산화탄소 흡수제의 효과로 인하여 개별 포장내에 산소 농도가 9~11%, 이산화탄소 농도가 1~4% 범위를 얻을 수 있어서 품질보존에 도움이 되는 변형기체가 형성되었다. 처리구 간에 따른 경도와 표면색택, 호기성 세균수 등의 품질 변화에 대해서는 유의적인 차이를 확인할 수 없었으나, 대조구에 비해 이산화탄소 흡수제와 수분 흡수제의 처리구가 부패율 감소와 곰팡이/효모수의 성장억제 효과를 얻을 수 있었다. 농가에서 포장 전 예건처리를 할 수 없는 상황이기 때문에 계절적인 요인에 따라 이산화탄소 흡수제와 수분 흡수제의 양을 조절한다면 active 마스터 포장 시스템의 효과를 볼 수 있을 것으로 생각한다.

Antioxidant and Bioactive Films to Enhance Food Quality and Phytochemical Production during Ripening

  • Min Byungjin;Dawson Paul L.;Shetty Kalidas
    • 한국축산식품학회지
    • /
    • 제25권1호
    • /
    • pp.60-65
    • /
    • 2005
  • Antioxidant films are one active packaging technology that can extend food shelf-life through preventing lipid oxidation, stabilizing color, maintaining sensory properties and delaying microbial growth in foods. Because raw, fresh and minimal processed foods are more perishable during storage or under display conditions than further processed foods, they rapidly lose their original quality. Foods are susceptible to physical, chemical, and biochemical hazards to which packaging films can be effective barriers. Although films incorporated natural (tocopherols, flavonoids and phenolic acids) or synthetic antioxidants (BHT, BHA, TBHQ, propyl gallate) have been extensively tested to improve quality and safety of various foods, food applications require addressing issues such as physical properties, chemical action, cost, and legal approval. Increased interest in natural antioxidants as substitutes for synthetic antioxidants has triggered research on use of the new natural antioxidants in films and coatings. Use of new components (phytochemicals) as film additives can improve food quality and human health. The biosynthesis of plant phenolics can potentially be optimized by active coatings on harvested fruits and vegetables. These coatings can trigger the plants natural proline-linked pentose phosphate pathway to increase the phenolic contents and maintain overall plant tissue quality. This alternate metabolic pathway has been proposed by Dr. K. Shetty and is supported by numerous studies. A new generation of active food films will not only preserve the food, but increase food's nutritional quality by optimizing raw food biochemical production of phytochemicals.

김치포장 내부의 이산화탄소 및 산소 제어를 위한 포장 기술 고찰 (Critical review on Active Technologies to Regulate the Levels of Carbon Dioxide and Oxygen for Kimchi Packaging)

  • 정수연;이현규;이정수;유승란
    • 한국식생활문화학회지
    • /
    • 제34권2호
    • /
    • pp.233-239
    • /
    • 2019
  • This paper presents a literature review on the active technologies to regulate the levels of carbon dioxide and oxygen in Kimchi packaging. In this study, laser-etched pouches and $O_2$ scavengers were used for Kimchi packaging, and the efficiency of each packaging technique to regulate the $CO_2$ and $O_2$ levels inside Kimchi packages was investigated. When Kimchi was packaged with a laser-etched pouch, the $CO_2$ concentration in the sample with a high gas transmission rate was less than that in other pouches (p<0.05), and a low $CO_2$ level had little effect on the expansion of the package volume. Kimchi treated with an $O_2$ absorber exhibited a significantly lower (p<0.05) $O_2$ concentration inside the packages relative to the control. A low $O_2$ concentration inside the Kimchi package effectively inhibited the growth of total aerobic bacteria and lactic acid bacteria, as well as yeasts and molds on Kimchi. These results suggest that $O_2$ absorbers have a positive effect on the microbial quality of Kimchi. Therefore, packaging in a laser-etched pouch and the use of an $O_2$ scavenger could provide a novel packaging material for regulating the $CO_2$ and $O_2$ levels during Kimchi packaging.

Shelf-life Extension of Fresh and Processed Meat Products by Various Packaging Applications

  • Lee, Keun Taik
    • 한국포장학회지
    • /
    • 제24권2호
    • /
    • pp.57-64
    • /
    • 2018
  • This article delves into the current status of various packaging technologies, which are currently being applied or are under development for the shelf-life extension and quality improvement of fresh and processed meat products. Traditional packaging methods include vacuum packaging, modified atmosphere packaging, and air-permeable packaging. Recently, innovative packaging methods have been introduced that utilize technologies such as barrier-films, active packaging, nanotechnology, microperforated films, far-infrared radiations, and plasma treatment. All of these packaging methods have their own merits and drawbacks in terms of shelf-life and quality maintenance. A right choice of packaging system for fresh and processed meat products must be made in accordance with the conditions of the raw material, storage, and distribution in the market and household, and while considering the environmental sustainability and consumer's expectations.