References
- Singh, S., Gaikwad, K. K., Lee, M., and Lee, Y. S. 2018. Temperature sensitive smart packaging for monitoring the shelf life of fresh beef. J. Food Eng. 234: 41-49. https://doi.org/10.1016/j.jfoodeng.2018.04.014
- Gaikwad, K. K., Singh, S., and Lee, Y. S. 2018. Oxygen scavenging films in food packaging. Environ. Chem. Lett. 16: 523-538. https://doi.org/10.1007/s10311-018-0705-z
- Singh, S., Gaikwad, K. K., and Lee, Y. S. 2018. Phase change materials for advanced cooling packaging. Environ. Chem. Lett. 16: 845-859. https://doi.org/10.1007/s10311-018-0726-7
- Gaikwad, K. K., Singh, S., and Ajji, A. 2018. Moisture absorbers for food packaging applications. Environ. Chem. Lett. 1-20. https://doi.org/10.1007/s10311-018-0810-z
- Gaikwad, K. K., Lee, S. M., Lee, J. S., and Lee, Y. S. 2017. Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. J. Food Meas. Charact. 11: 1706-1716. https://doi.org/10.1007/s11694-017-9551-0
- Singh, S., Lee, M., Gaikwad, K. K. and Lee, Y. S. 2018. Antibacterial and amine scavenging properties of silver-silica composite for post-harvest storage of fresh fish. Food Bioprod. Process 107: 61-69. https://doi.org/10.1016/j.fbp.2017.10.009
- Singh, S., Gaikwad, K. K., Lee, M., and Lee, Y. S. 2018. Microwave-assisted micro-encapsulation of phase change material using zein for smart food packaging applications. J. Therm. Anal. Calorim. 131: 2187-2195. https://doi.org/10.1007/s10973-017-6768-4
- Gaikwad, K. K., Singh, S., and Lee, Y. S. 2018. High adsorption of ethylene by alkali-treated halloysite nanotubes for foodpackaging applications. Environ. Chem. Lett. 16: 1055-1062. https://doi.org/10.1007/s10311-018-0718-7
- Gaikwad, K. K., Singh, S., and Lee, Y. S. 2017. A new pyrogallol coated oxygen scavenging film and their effect on oxidative stability of soybean oil under different storage conditions. Food Sci. Biotechnol. 26:1535-1543. https://doi.org/10.1007/s10068-017-0232-x
- Gaikwad, K. K., Singh, S., and Lee, Y. S. 2018. Antimicrobial and improved barrier properties of natural phenolic compound-coated polymeric films for active packaging applications. J. Coat. Technol. Res. 1-11. https://doi.org/10.1007/s11998-018-0109-9
- Singh, S., Gaikwad, K. K., Lee, M., and Lee, Y. S. 2018. Temperature-regulating materials for advanced food packaging applications: A review. J. Food Meas. Charact. 12: 588-601. https://doi.org/10.1007/s11694-017-9672-5
- Singh, S., Gaikwad, K. K., and Lee, Y. S. 2018. Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. Int. J. Biol. Macromol. 107: 1879-1887. https://doi.org/10.1016/j.ijbiomac.2017.10.057
- Singh, S., Gaikwad, K. K., Lee, M., and Lee, Y. S. 2018. Thermally buffered corrugated packaging for preserving the postharvest freshness of mushrooms (Agaricus bispours). J. Food Eng. 216: 11-19. https://doi.org/10.1016/j.jfoodeng.2017.07.013
- Ahn, B. J., Gaikwad, K. K., and Lee, Y. S. 2016. Characterization and properties of LDPE film with gallic-acid-based oxygen scavenging system useful as a functional packaging material. J. Appl. Polym. Sci. 133: 43.
- Choi, W. S., Singh, S., and Lee, Y. S. 2016. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of 'Formosa' plum (Prunus salicina L.). LWT-Food Sci. Technol. 70: 213-222. https://doi.org/10.1016/j.lwt.2016.02.036
- Gaikwad, K. K. and Lee, Y. S. 2017. Current scenario of gas scavenging systems used in active packaging-A review. Korean Journal of Packaging Science & Technology 23: 109-117. https://doi.org/10.20909/kopast.2017.23.2.109
- Gaikwad, K. K., and Lee, Y. S. 2016. Novel natural phenolic compound-based oxygen scavenging system for active packaging applications. J. Food Meas. Charact. 10: 533-538. https://doi.org/10.1007/s11694-016-9332-1
- Singh, S., Gaikwad, K. K., Park, S. I., and Lee, Y. S. 2017. Microwave-assisted step reduced extraction of seaweed (Gelidiella aceroso) cellulose nanocrystals. Int. J. Biol. Macromol. 99: 506-510. https://doi.org/10.1016/j.ijbiomac.2017.03.004
- Zhang, N., Liu, X., Jin, X., Li, C., Wu, X., Yang, S., Ning, J., Yanne, P., 2017. Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging. Food Chem. 237: 811-817. https://doi.org/10.1016/j.foodchem.2017.06.007
- Dong, S., Luo, M., Peng, G., and Cheng, W. 2008. Broad range pH sensor based on sol-gel entrapped indicators on fibre optic. Sensors and Actuators B: Chemical 129: 94-98. https://doi.org/10.1016/j.snb.2007.07.078
- Yoshida, C. M. P., Maciel, V. B. V, Mendonca, M. E. D., and Franco, T. T. 2014. Chitosan biobased and smart films: Monitoring pH variations. LWT-Food Sci. Technol. 55: 83-89. https://doi.org/10.1016/j.lwt.2013.09.015
- Calogero, G., Yum, J. H., Sinopoli, A., Di Marco, G., Gratzel, M., and Nazeeruddin, M. K. 2012. Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy 86: 1563-1575. https://doi.org/10.1016/j.solener.2012.02.018
- Santos, D. T., Veggi, P. C., and Meireles, M. A. 2010. Extraction of antioxidant compounds from jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. Journal of Food Engineering 101: 23-31. https://doi.org/10.1016/j.jfoodeng.2010.06.005
- Yang, Y., Yuan, X., Xu, Y., and Yu, Z. 2015. Purification of anthocyanins from extracts of red raspberry using macroporous resin. International Journal of Food Properties 18: 1046-58. https://doi.org/10.1080/10942912.2013.862632
- Ju, Z. and Howard, L. R. 2005. Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. Journal of Food Science 70: 270-276.
- Grigoras, C. G., Destandau, E., Zubrzycki, S., and Elfakir, C. 2012. Sweet cherries anthocyanins: An environmental friendly extraction and purification method. Separation and Purification Technology 100: 51-58. https://doi.org/10.1016/j.seppur.2012.08.032
- Arapitsas, P. and Turner, C. 2008. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 74: 1218-1223. https://doi.org/10.1016/j.talanta.2007.08.029
- Lopez, N., Puertolas, E., Condon, S., Alvarez, I., and Raso, J. 2008. Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innov. Food Sci. Emerg. Technol. 9: 477-482. https://doi.org/10.1016/j.ifset.2007.11.001
- Chandrasekhar, J., Madhusudhan, M. C., and Raghavarao, K. S. M. S. 2012. Extraction of anthocyanins from red cabbage and purification using adsorption. Food and Bioproducts Processing 90: 615-623. https://doi.org/10.1016/j.fbp.2012.07.004
- Barnes, J. S., Nguyen, H. P., Shen, S., and Schug, K. A. 2009. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatographyelectrospray ionization-ion trap-time of flight-mass spectrometry. Journal of Chromatography A 1216: 4728-4735. https://doi.org/10.1016/j.chroma.2009.04.032
- Castaneda-Ovando, A., de Lourdes Pacheco-Hernandez, M., Paez-Hernandez, M. E., Rodriguez, J. A., and Galan-Vidal, C. A. 2009. Chemical studies of anthocyanins: A review. Food Chemistry 113: 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001
- Rodriguez-Amaya, D. B. 2018. Update on natural food pigments -A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, https://doi.org/10.1016/j.foodres.2018.05.028
- Wang, W. D. and Xu, S. Y. 2007. Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering 82: 271-275. https://doi.org/10.1016/j.jfoodeng.2007.01.018
- Deylami, M. Z., Rahman, R. A., Tan, C. P., Bakar, J., and Olusegun, L. 2016. Effect of blanching on enzyme activity, color changes, anthocyanin stability and extractability of mangosteen pericarp: A kinetic study. Journal of Food Engineering 178: 12-19. https://doi.org/10.1016/j.jfoodeng.2016.01.001
- Liu, B., Xu, H., Zhao, H., Liu, W., Zhao, L., and Li, Y. 2017. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohyd. Polym. 157: 842-849. https://doi.org/10.1016/j.carbpol.2016.10.067
- Prietto, L., Pinto, V. Z., El Halal, S. L. M., de Morais, M. G., Costa, J. A. V., Lim, L. T., ... and Zavareze, E. D. R. 2018. Ultrafine fibers of zein and anthocyanins as natural pH indicator. J. Sci. Food Agric. 98: 2735-2741. https://doi.org/10.1002/jsfa.8769
- Saliu, F. and Della Pergola, R. 2018. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sensors and Actuators B: Chemical 258: 1117-1124. https://doi.org/10.1016/j.snb.2017.12.007
- Uranga, J., Etxabide, A., Guerrero, P., and de la Caba, K. 2018. Development of active fish gelatin films with anthocyanins by compression molding. Food Hydrocolloids 84: 313-320. https://doi.org/10.1016/j.foodhyd.2018.06.018
- Stoll, L., Costa, T. M. H., Jablonski, A., Flores, S. H., and de Oliveira Rios, A. 2016. Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology 9: 172-181. https://doi.org/10.1007/s11947-015-1610-0
- e Silva, A. O., Haas, T. M., Hickmann, S., & de Oliveira, A. (2017). Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extraa virgin olive oil during storage. Journal of Food Processing and Preservation.
- Saliu, F. and Della Pergola, R. 2018. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sensors and Actuators B: Chemical 258: 1117-1124. https://doi.org/10.1016/j.snb.2017.12.007
- Wei, J., Xu, D., Zhang, X., Yang, J., and Wang, Q. 2018. Evaluation of anthocyanins in Aronia melanocarpa/BSA binding by spectroscopic studies. AMB Express, 8: 72. https://doi.org/10.1186/s13568-018-0604-5
- Zhang, X., Lu, S., and Chen, X. 2014. A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors and Actuators B: Chemical 198: 268-273. https://doi.org/10.1016/j.snb.2014.02.094
- Ma, Q., and Wang, L. 2016. Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical 235: 401-407. https://doi.org/10.1016/j.snb.2016.05.107
- Choi, I., Lee, J. Y., Lacroix, M., and Han, J. 2017. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry 218: 122-128. https://doi.org/10.1016/j.foodchem.2016.09.050
- Silva-Pereira, M. C., Teixeira, J. A., Pereira-Junior, V. A., and Stefani, R. 2015. Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT-Food Sci. Technol. 61: 258-262. https://doi.org/10.1016/j.lwt.2014.11.041
- Maciel, V. B. V, Yoshida, C. M. P., Franco, T. T., 2012. Development of a prototype of a colourimetric temperature indicator for monitoring food quality. J. Food Eng. 111: 21-27. https://doi.org/10.1016/j.jfoodeng.2012.01.037
- Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., Parandi, E. 2017. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydr. Polym. 156: 193-201. https://doi.org/10.1016/j.carbpol.2016.09.027
- Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., ... and Holmes, M. 2017. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids 69: 308-317. https://doi.org/10.1016/j.foodhyd.2017.02.014
- Pereira, P. F. and Andrade, C. T. 2017. Optimized pH-responsive film based on a eutectic mixture-plasticized chitosan. Carbohyd. Polym. 165: 238-246. https://doi.org/10.1016/j.carbpol.2017.02.047
- Listyarini, A., Sholihah, W., and Imawan, C. 2018. A paperbased colorimetric indicator label using natural dye for monitoring shrimp spoilage. In IOP Conference Series: Materials Science and Engineering 367: 012045.
- Halasz, K. and Csoka, L. 2018. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packaging and Shelf Life 16: 185-193. https://doi.org/10.1016/j.fpsl.2018.03.002
- Fitriana, R., Imawan, C., Listyarini, A., and Sholihah, W. 2017. A green label for acetic acid detection based on chitosan and purple sweet potatoes extract. In Sensors, Instrumentation, Measurement and Metrology (ISSIMM), 129-132.
-
Liang, T., Sun, G., Cao, L., Li, J., and Wang, L. 2019. A pH and
$NH_3$ sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloids 87: 858-868. https://doi.org/10.1016/j.foodhyd.2018.08.028 - Luchese, C. L., Sperotto, N., Spada, J. C., and Tessaro, I. C. 2017. Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film. Int. J. Biol. Macromol. 104: 11-18. https://doi.org/10.1016/j.ijbiomac.2017.05.149
- Kurek, M., Garofulic, I. E., Bakic, M. T., Scetar, M., Uzelac, V. D., and Galic, K. 2018. Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. Food Hydrocolloids 84: 238-246. https://doi.org/10.1016/j.foodhyd.2018.05.050
-
Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., and Jiang, S. 2018. Films based on
${\kappa}$ -carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids 83: 134-142. https://doi.org/10.1016/j.foodhyd.2018.05.012 - Wei, Y. C., Cheng, C. H., Ho, Y. C., Tsai, M. L., and Mi, F. L. 2017. Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocolloids 69: 491-502. https://doi.org/10.1016/j.foodhyd.2017.03.010
- Gaikwad, K. K., Lee, J. Y., and Lee, Y. S. 2016. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. Journal of Food Science and Technology 53: 1608-1619. https://doi.org/10.1007/s13197-015-2104-9
- Gaikwad, K. K. and Lee, Y. S. 2017. Effect of storage conditions on the absorption kinetics of non-metallic oxygen scavenger suitable for moist food packaging. Journal of Food Measurement and Characterization 11: 965-971. https://doi.org/10.1007/s11694-017-9470-0
- Suebkhampet, A. and Sotthibandhu, P. 2012. Effect of using aqueous crude extract from butterfly pea flowers (Clitoria ternatea L.) as a dye on animal blood smear staining. Suranaree J. Sci. Technol. 19: 15-19.
- Okoduwa, S. I., Mbora, L. O., Adu, M. E., and Adeyi, A. A. 2015. Comparative analysis of the properties of acid-base indicator of Rose (Rosa setigera), Allamanda (Allamanda cathartica), and Hibiscus (Hibiscus rosa-sinensis) flowers. Biochemistry Research International, http://dx.doi.org/10.1155/2015/381721
- Suppadit, T., Sunthorn, N., and Poungsuk, P. 2011. Use of anthocyanin extracted from natural plant materials to develop a pH test kit for measuring effluent from animal farms. African Journal of Biotechnology 10: 19109-19118.
- Tilekar, K., Jagtap, P. N., and Hake, R. S. 2015. Methanolic extract of flowers & seeds: Natural resource as indicator in acidimetry & alkalimetry. International Journal of Advances in Pharmacy, Biology, Chemistry 4: 447-457.
- Kanda, N., Asano, T., Itoh, T., and Onoda, M. 1995. Preparing "chameleon balls" from natural plants: simple handmade pH indicator and teaching material for chemical equilibrium. Journal of Chemical Education 72: 1131. https://doi.org/10.1021/ed072p1131
- Syafinar, R., Gomesh, N., Irwanto, M., Fareq, M., and Irwan, Y. M. 2015. Potential of purple cabbage, coffee, blueberry and turmeric as nature based dyes for dye sensitized solar cell (DSSC). Energy Procedia 79: 799-807. https://doi.org/10.1016/j.egypro.2015.11.569
- Reyes, L. F. and Cisneros-Zevallos, L. 2007. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple-and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry 100: 885-894. https://doi.org/10.1016/j.foodchem.2005.11.002
- Choi, I., Lee, J. Y., Lacroix, M., and Han, J. 2017. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry 218: 122-128. https://doi.org/10.1016/j.foodchem.2016.09.050
- Chidan Kumar, C. S., Chandraju, S., Ahmad, T., Mythily, R., and Made Gowda, N. M. 2012. Extraction and evaluation of a new acid-base indicator from black gram husk (Vigna mungo). Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 42: 498-501. https://doi.org/10.1080/15533174.2011.613438
- Pimpodkar, N., Shikalgar, S., Shinde, N., Bhise, S., and Surve, B. 2014. Rhoeo syathacea and Allamanda cathartic extract as a natural indicator in acidometry-alkalimetry. Asian J. Pharm. Ana. 4: 82-84.
- Othman, M., Yusup, A. A., Zakaria, N., and Khalid, K. 2018. Bio-polymer chitosan and corn starch with extract of Hibiscus rosa-sinensis (hibiscus) as PH indicator for visually-smart food packaging. In AIP Conference Proceedings 1985: 050004.
- Ahmad, N. A., Heng, L. Y., Salam, F., and Hanifah, S. A. 2018. On-site detection of packaged squid freshness. In AIP Conference Proceedings 1940: 020084.
- Ghosh, T. and Katiyar, V. 2018. Cellulose-based hydrogel films for food packaging. Cellulose-Based Superabsorbent Hydrogels, 1-25.
- Poonam, G., Garg, S. L., Pramod, J., Uzgare, A. S., and Shikha, S. 2017. Elicitation of easily available and cheap source of natural acid-base indicator for volumetric analysis. Res. J. Chem. Environ. 21: 17-20.
- Biswas, N. C. and Dasmohapatra, G. 2017. Clitoria ternatia -A natural indicator of use. Int. J. Pharm. Res. 9: 1-7.
- Shukla, V., Kandeepan, G., Vishnuraj, M. R., and Soni, A., 2016. Anthocyanins based indicator sensor for smart packaging application. Agric. Res. 5: 205-209. https://doi.org/10.1007/s40003-016-0211-0
- Pereira Jr., V. A., de Arruda, I. N. Q., and Stefani, R. 2015. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time-temperature indicators for application in smart food packaging. Food Hydrocoll. 43: 180-188. https://doi.org/10.1016/j.foodhyd.2014.05.014
- Ishak, I., Muhamad, I. I., Marsin, A. M., and Iqbal, T., 2015. Development of purple sweet potato starch base biodegradable film. J. Teknol. 77: 75-78. https://doi.org/10.11113/jt.v77.6914
- Luchese, C. L., Frick, J. M., Patzer, V. L., Spada, J. C., and Tessaro, I. C. 2015. Synthesis and characterization of biofilms using native and modified pinhao starch. Food Hydrocolloids 45: 203-210. https://doi.org/10.1016/j.foodhyd.2014.11.015
- Golasz, L. B., da Silva, J., and da Silva, S. B., 2013. Film with anthocyanins as an indicator of chilled pork deterioration. Food Sci. Technol. 33: 155-162. https://doi.org/10.1590/S0101-20612013000500023
- Veiga-Santos, P., Ditchfield, C., and Tadini, C. C. 2011. Development and evaluation of a novel pH indicator biodegradable film based on cassava starch. J. Appl. Polym. Sci. 120: 1069-1079. https://doi.org/10.1002/app.33255
Cited by
- The Application of (+)-Catechin and Polydatin as Functional Additives for Biodegradable Polyesters vol.21, pp.2, 2020, https://doi.org/10.3390/ijms21020414
- Selected purple-fleshed sweet potato genotypes with high anthocyanin contents vol.456, pp.None, 2018, https://doi.org/10.1088/1755-1315/456/1/012023
- Biodegradable Polyester Materials Containing Gallates vol.12, pp.3, 2018, https://doi.org/10.3390/polym12030677
- The Effect of Natural Additives on the Composting Properties of Aliphatic Polyesters vol.12, pp.9, 2020, https://doi.org/10.3390/polym12091856
- Innovations in Smart Packaging Concepts for Food: An Extensive Review vol.9, pp.11, 2018, https://doi.org/10.3390/foods9111628
- Plant-Origin Stabilizer as an Alternative of Natural Additive to Polymers Used in Packaging Materials vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084012
- Anthocyanin Films in Freshness Assessment of Minced Fish vol.51, pp.2, 2021, https://doi.org/10.21603/2074-9414-2021-2-349-362
- Anthocyanin food colorant and its application in pH-responsive color change indicator films vol.61, pp.14, 2018, https://doi.org/10.1080/10408398.2020.1776211
- Novel Hybrid Polymer Composites Based on Anthraquinone and Eco-Friendly Dyes with Potential for Use in Intelligent Packaging Materials vol.22, pp.22, 2018, https://doi.org/10.3390/ijms222212524