DOI QR코드

DOI QR Code

Enhancing the Oxygen Removal Rate for Its Application in Food Packaging Through the Impregnation of Porous Materials with the Non-metallic Oxygen Scavenger Sodium Metabisulfite

메타중아황산나트륨을 다공성물질에 함침하여 제조한 비금속류 산소제거제의 산소제거속도 향상 및 식품 포장 적용 연구

  • Published : 2024.04.30

Abstract

The addition of oxygen scavengers to food products helps to reduce oxygen exposure, thereby mitigating deterioration, including changes in taste, odor, and color, as well as inhibiting microbial growth. Despite the advantages of the existing non-metallic oxygen removal materials in terms of safety for the human body and suitability for use in microwave ovens, their utilization has been limited due to their slow reaction initiation speed. Therefore, in the current study, sodium metabisulfite was impregnated into various porous media, including halloysite nanoclay, activated carbon, montmorillonite, and silica gel. The oxygen scavenger, produced by impregnating silica gel with sodium metabisulfite, demonstrated a 425% improvement in the initial oxygen removal rate compared to pure sodium metabisulfite. Additionally, sachets containing an oxygen-removing composition with an enhanced oxygen removal rate effectively decreased the oxygen concentration to less than 0.5% on the third day of storage in apple packaging, without elevating carbon dioxide levels. Moreover, it proved effective in preventing the browning of the apple surface. Therefore, the SM/SG oxygen-removal composition can be effectively applied to active food packaging by controlling the oxygen concentration within the packaging.

Keywords

Acknowledgement

본 연구는 세계김치연구소 기관고유사업 (KE2402-2-1)의 연구비 지원을 받아 수행되었음.

References

  1. Gaikwad, K.K. and Lee, Y.S. 2016. Novel natural phenolic compound-based oxygen scavenging system for active packaging applications. Journal of Food Measurement and Characterization, 10: 533-538.
  2. Dey, A. and Neogi, S. 2019. Oxygen scavengers for food packaging applications: A review, 90: 26-34. https://doi.org/10.1016/j.tifs.2019.05.013
  3. Cruz, R.S., Camilloto, G.P. and dos Santos Pires, A.C. 2012. Structure and Function of Food Engineering Chapter 2, Oxygen Scavengers: An Approach on Food Preservation, 21-42.
  4. Janjarasskul, T. and Suppakul, P. 2018. Active and intelligent packaging: the indication of quality and safety. Critical reviews in food science and nutrition, 58: 808-831.
  5. Byun, Y., Bae, H.J., and Whiteside, S. 2012. Active warm-water fish gelatin film containing oxygen scavenging system. Food hydrocolloids, 27: 250-255.
  6. Gaikwad, K.K., Singh, S. and Lee, Y.S. 2018. Oxygen scavenging films in food packaging. Environmental Chemistry Letters, 16: 523-538.
  7. Ahn, B.J., Gaikwad, K.K. and Lee, L.S. 2016. Characterization and properties of LDPE film with gallic-acid-based oxygen scavenging system useful as a functional packaging material. Journal of Applied Polymer Science, 133(43): 1-8. https://doi.org/10.1002/app.44138
  8. Lee, J.S., Chang, Y., Lee, E.S., Song, H.G., Chang, P.S. and Han, J. 2018. Ascorbic Acid?Based Oxygen Scavenger in Active Food Packaging System for Raw Meatloaf. Journal of food science, 83: 682-688.
  9. Scarfato, P., Avallone, E., Galdi, M.R., Maio, L. Di., and Incarnato, L. 2017. Preparation, characterization, and oxygen scavenging capacity of biodegradable α-tocopherol/PLA microparticles for active food packaging applications. Polymer Composites, 38: 981-986.
  10. Jeong, S., Lee, H.G., Cho, C.H. and Yoo, S.R. 2020. Characterization of multi-functional, biodegradable sodium metabisulfite-incorporated films based on polycarprolactone for active food packaging applications. Food Packaging and Shelf Life, 25: 1-9.
  11. Lee, J.S., Jeong, S., Lee, H.G., Cho, C.H. and Yoo, S.R. 2018. Development of a sulfite-based oxygen scavenger and its application in kimchi packaging to prevent oxygen-mediated deterioration of kimchi quality. Journal of Food Science, 83(12): 3009-3018. https://doi.org/10.1111/1750-3841.14374
  12. Feng, S., Luo, Z., Shao, S., Wu, B. and Ying, T. 2013. Effect of relative humidity and temperature on absorption kinetics of two types of oxygen scavengers for packaged food, International Journal of Food Science &Technology, 48: 1390-1395.
  13. Cardona, E.D., Noriega, M.D.P. and Sierra, J.D. 2011. Oxygen scavengers impregnated in porous activated carbon matrix for food and beverage packaging applications. Journal of Plastic film and Sheeting, 28(1): 63-78. https://doi.org/10.1177/8756087911427730
  14. Maziarz, P., Matusik, J., Leiviska, T., Straczek, T., Kaqusta, C., Woch, W.M., Tokarz, W. and Gorniak, K. 2019. Toward highly effective and easily separable halloysite-containing adsorbents: The effect of iron oxide paricles impregnation and new insight into As(V) removal mechanisms. Separation and purification technology, 210: 390-401.
  15. Zakaria, R., Jamalluddin, N.A. and Bakar, M.Z.A. 2021. Effect of impregnation ration and activation temperature on the yield and adsorption performance of mangrove based activated carbon for methylene blue removal. Results in Materials, 10: e100183.
  16. Alekseeva, O., Noskov, A., Grishina, E., Ramenskaya, L., Kudryakova, N., Ivanov, V. and Agafonov, A. 2019. Structure and thermal properties of montmorillonite/ionic liquid composites. Materials, 12(16): e2578.
  17. Sliwa, M., Samson, K., Ruggiero-Mikolajczyk, M., Zelazny, A. and Grabowski, R. 2014. Influence of montmorillonite K10 modification with tungstophosphoric acid on hybrid catalyst activity in direct dimethyl ether synthesis from syngas. Catalysis Letters, 144: 1884-1893.
  18. Li, X., Li, Z., Xia, Q. and Xi, H. 2007., Effects of pore sizes of porous silica gels on desorption activation energy of water vapour. Applied Thermal Engineering, 27: 869-876.
  19. Wang, Y.M., Liu, S.W., Xiu, Z., Jiao, X.B., Cui, X.P. and Pan, J. 2006. Preparation and photocatalytic properties of silica gel-supported TiO2. Materials Letters, 60: 974-978.
  20. Trojanowska, D.J., Suarato, G., Braccia, C., Armirotti, A., Fiorentini, F., Athanassiou, A. and Perotto, G. 2022. Wool keratin nanoparticle-based micropatterns for cellular guidance applications. Applied Nano Materials, 5: 15272-15287.
  21. Barot, T., Rawtani, D. and Kulkarni, P. 2020. Physicochemical and biological assessment of silver nanoparticles immobilized halloysite nanotubes-based resin composite for dental applications. Heliyon, 6: e03601.
  22. Jeong, S., Lee, H.G., Lee, S.Y. and Yoo, S.R. 2024. Preparation of food active pacakging materials based on calcium hydroxide and modified porous medium for reducing carbon dioxide and kimchi odor. Journal of Food Science, 89: 419-434.
  23. Ouardi M.e., Laabd, M., Oualid, H.A., Brahmi, Y., Abaamrane, A., Elouahli, A., Addi, A.A., Laknifli, A. 2019. Efficient removal of p-nitrophenol from water using montmorillonite clay: insights into the adsorption mechanism, process optimization, and regeneration. Environmental Science and Pollution Research, 26: 19615-19631.
  24. Shukla, N., Debnath, A., Banerjee, S. 2022. Sonochemical synthesis of silica supported iron nanoparticles for enhanced removal of Cr(VI) species from aqueous medium. Nanotechnology for Environmental Engineering, 7: 11-22.
  25. Adetola, O., Little, I., Mohseni, R., Molodyi, D., Bohvan, S., Golovko, L. and Vasiliev A. 2017. Synthesis of mesosilica gels with embedded heteropolyacids. Journal of Sol-Gel Science and Technology, 81: 205-213.
  26. Ni'mah, Y.L., Yuningsih, N.E. and Suprapto, S. 2023. The adsorption of Pb (II) using silica gel synthesized from chemical bottle waste: Optimization using box-behnken design. Journal of Renewable Materials, 11(6): 2913-2924. https://doi.org/10.32604/jrm.2023.025431
  27. Jeong, S., Lee, H.G. and Yoo, S.R. 2024. Effect of catalyst carrier type and concentration on oxygen-scavenging property and characteristics of iron-based active films. Food Science and Biotechnology, https://doi.org/10.1007/s10068-024-01520-4.
  28. Wang, X., Zhang, X., Jia, P., Luan, H., Qi, G., Li, H. and Guo, S. 2023. Transcriptomics and metabolomics provide insight into the anti-browning mechanism of selenium in freshly cut apples. Frontiers in Plant Science, 14: e1176936.
  29. Ioannou, I. and Ghoul, M. 2013. Prevention of enzymatic browning in fruit and vegetables. European Scientific Journal, 9(30): 310-341.
  30. Xu, H., Zhang, X., Karangwa, E. and Xia, S. 2017. Correlating enzymatic browning inhibition and antioxidant ability of maillard reaction products derived from different amino acids. Journal of the Science of Food and Agriculture, 97: 4210-4218.  https://doi.org/10.1002/jsfa.8295