• 제목/요약/키워드: active feedforward

검색결과 97건 처리시간 0.027초

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method

  • Ro Seung-Kook;Kyung Jin-Ho;Park Jong-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.19-25
    • /
    • 2005
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensors for control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking performances and stability numerically with established frequency response function. The designed feedforward controller was applied to a grinding spindle system which is manufactured with a 5.5 kW internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15∼30㎛ of electrical runout. According to the experimental results, the error signal in radial bearings is reduced to less than 5 ,Urn when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and corresponding vibration of the spindle is also removed.

3상 계통 연계형 인버터에서의 전류 고조파 감쇄를 위한 능동형 피드포워드 보상 기법 (An Active Feedforward Compensation for a Current Harmonics Reduction in Three-phase Grid-connected Inverters)

  • 박병준;김래영;최기영
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2014
  • This paper proposes a current harmonic compensation method for the grid-connected inverter, especially caused by the grid impedance. Grid impedance causes low order harmonics in the grid current and deteriorates power quality. This paper analyzes the negative impact of the grid impedance, and proposes an active feedforward compensation method. Proposing method verified through simulation and experiment with 3-phase 1.5kW voltage source inverter prototype.

하이브리드 제어 알고리즘을 이용한 덕트내 능동소음제어 (Active Noise Control in a Duct System Using the Hybrid Control Algorithm)

  • 이유엽;박상길;오재응
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.288-293
    • /
    • 2009
  • This study presents the active noise control of duct noise. The duct was excited by a steady-state harmonic and white noise force and the control was performed by one control speaker attached to surface of the duct. An adaptive controller based on filtered x LMS(FXLMS) algorithm was used and controller was defined by minimizing the square of the response of the error microphone. The assemble controller, which is called a hybrid ANC(active noise control) system, was combined with feedforward and feedback controller. The feedforward ANC attenuates primary noise that is correlated with the reference signal, while the feedback ANC cancels the narrowband components of the primary noise that are not observed by the reference sensor. Furthermore, in many ANC applications, the periodic components of noise are the most intense and the feedback ANC system has the effect of reducing the spectral peaks of the primary noise, thus easing the burden of the feedforward ANC filter.

전자기력을 이용한 능동제진에 관한 연구 (A Study on Active Vibration Isolation Using Electro-Magnetic Actuator)

  • 손태규;김규용;박영필
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1169-1181
    • /
    • 1994
  • Vibration isolation of mechanical systems, in general, is achieved through passive or active vibration isolators. Passive vibration isolator has an inherenrt performance limitation. Whereas, active vibration isolator provides significantly superior vibration-isolation performance at the cost of energy sources and sensors. Recently, in many cases, such as suspension system, precision machinery ... etc, active isolation system outweighs its limitation. Therefore, many studies, researches, and applications are carried out in this field. In this study, vibration-isolation characteristics of an active vibration control system using electromagnetic force actuator are investigated. Several control algorithms including optimal, feedforward are used for active vibration isolation. From the experimental results of each algorithm, effective control algorithms for this active vibration-isolation system are proposed.

유연빔의 피드포워드 능동 충격응답 제어 (Feedforward Active Shock Response Control of a Flexible Beam)

  • 표상호;이영섭;신기홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.213-216
    • /
    • 2005
  • Active control method is applied to a flexible beam excited by a shock impulse by focusing on reducing the residual vibrations after the shock input. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using an error sensor and adaptive algorithm. Both numerical simulation and experimental result show a promising possibility of applying to a practical problem.

  • PDF

능동 하이브리드 마운트 시스템의 진동제어 성능 평가 : 실험적 고찰 (Evaluation of Vibration Control Performance for Active Hybrid Mount System : Experimental Investigation)

  • 오종석;최승복;벤큐오;문석준;최상민
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.455-460
    • /
    • 2011
  • In this work, an active hybrid mount using piezostack actuator and rubber element is manufactured, and its vibration control performance is evaluated via feedforward control. A hybrid active mount featuring inertia type of piezostack actuator is proposed and manufactured. After describing the configuration of the hybrid mount, a mount system is then constructed. To attenuate vibrations from vibration sources, a feedfoward controller is experimentally implemented to the system. Vibration control performances are evaluated at each mount. Effective control performances such as accelerations are obtained and presented in frequency domains.

인클러져 개구부 투과소음 능동제어 (Active Control of Transmitted Noise through Opening of Enclosures)

  • 이한울;홍진숙;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.733-738
    • /
    • 2012
  • This paper presents active noise control for the reduction of transmission noise passing through opening of enclosures. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, we modeled and analyzed the noise characteristics passing through the openings of the enclosure generated by the operation of the machinery based on the finite element method. We then implemented a feedforward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. A good control performances were achieved using a minimum number of microphones arranged a optimal placement.

  • PDF

관성형 작동기를 이용한 능동 하이브리드 마운트 시스템의 진동제어 성능 평가 (Evaluation of Vibration Control Performance for Active Hybrid Mount System Featuring Inertial Actuator)

  • 오종석;최승복;벤큐오;문석준
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.768-773
    • /
    • 2011
  • This work presents an experimental investigation on vibration control of the active hybrid mount system for naval ships. To reduce unwanted vibrations, this paper proposes an active mount which consists of rubber element, piezostack actuator and inertial mass. The rubber element supports a mass. The piezostack actuator generates a proper control force and supply it to the mount system. To avoid being broken piezostack actuator, an actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is positioned between inertial mass and rubber element. Vibration control performances of the active mount system are evaluated via experiment. To attenuate the unwanted vibrations transferred from upper mass, the feedforward control is designed. In order to implement a control experiment, the active mount system supported by four active mounts is constructed. For realization of the controller, one-chip board is manufactured and utilized. Subsequently, vibration control performances of the proposed active mount system are experimentally evaluated in frequency domains.

MFXLMS 알고리즘을 이용한 전자기베어링계의 외란보상 제어기 - 실험 (Disturbance Compensation Control of An Active Magnetic Bearing System by Multiple FXLMS Algorithm - Experiments)

  • 강민식;정종수
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.83-91
    • /
    • 2004
  • This paper illustrates the feasibility and the effectiveness of the disturbance feedforward compensation control proposed in the previous paper. The compensator is designed experimentally by means of the Multiple Filtered-x Least Mean Square algorithm. A 2-DOF active magnetic bearing system subject to base motion is built and the compensation control is applied. The experimental results demonstrate that the compensation control reduces the air-gap responses within 10$%$ of those by the feedback control alone without increasing the control inputs.

전자기베어링에서 Filtered-x LMS 알고리즘을 이용한 외란보상 제어기 설계 (Disturbance Compensation Control in Active Magnetic Bearing Systems by Filtered-x LMS Algorithm)

  • 강민식;강윤식;이대옥
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.447-450
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system. it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. A disturbance compensation control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate adaptively the frequency response function of the feedforward control which cancels disturbance responses. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

  • PDF