• 제목/요약/키워드: active controller

검색결과 1,111건 처리시간 0.03초

구조물의 에너지를 이용한 확률에 기초한 능동제어 (Probability-Based Active Control Using Structure Energy)

  • Min, Kyung-Won;Hwang, Jae-Seung;Lee, Sang-Hyun;Lan Chung
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.47-55
    • /
    • 2003
  • This paper Presents active control algorithm using probability density function of structural energy. It is assumed that the structural energy under excitation has Rayleigh probability distribution. This assumption is based on the fact that Rayleigh distribution satisfies the condition that the structural energy is always positive and the occurrence probability of minimum energy is zero. The magnitude of control force is determined by the probability that the structural energy exceeds the specified target critical energy, and the sign of control force is determined by Lyapunov controller design method. Proposed control algorithm shows much reduction of peak responses under seismic excitation compared to LQR controller, and it can consider control force limit in the controller design. Also, chattering problem which sometimes occurs in Lyapunov controller can be avoided.

  • PDF

통신용 헤드셋을 위한 능동소음제어기의 설계 (A Design of an Active Noise Controller in a Communication Headset)

  • 정태진;정찬수
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.102-108
    • /
    • 2001
  • In this paper, an active noise controller for a communication headset was designed. In a communication headset, there exist information signals such as voices from the end for the communication line as well as also, undesirable noises with are induced by external noise sources such as engine noises. Therefore, it is necessary to reduce the external noises for clear hearing of the communication signals. This problem was solved by robust H(sub)$\infty$ controller to reduce noise and a compensator for information signals The designed controller was implemented using TMS320C31 DSP Op-amp, and several experiments were performed to verify its performance. The results showed that the controller reduces the undesirable noises sufficiently, while communication signals are not reduced.

  • PDF

A Study on Intelligent Active Roll Angle Controller Design Analysis and Modeling Algorithm

  • Park, Jung-Hyen
    • 융합신호처리학회논문지
    • /
    • 제10권2호
    • /
    • pp.146-150
    • /
    • 2009
  • An Intelligent active roll angle controller design algorithm is discussed. The detailed mathematical formulation and analysis are discussed, and then modeling and design method for active roll angle controller are presented. This paper proposes a design method based upon intelligent robust controller design algorithm to control actively roll angle for improving cornering performance problems. The intelligent robust controller is designed for steady speed driving vehicle system model with representation of steering angle and yaw angular velocity parameters for cornering stability. And the detailed formulation and analysis for the objective vehicle system are investigated.

  • PDF

Fuzzy Pre-Compensated PI Control of Active Filters

  • Singh, Bhim;Singhal, Varun
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.141-147
    • /
    • 2008
  • This paper deals with a new and improved control technique for shunt active filters (AF) used for compensating unwanted harmonic currents injected in the mains due to nonlinear varying loads. This work is motivated by the need to find a permanent solution to the rigorous hit and trial method for evaluating system parameters in an indirect control of AF. A fuzzy pre-compensated PI (Proportional-Integral) controller is used to fuzzify the reference DC voltage of AF to the controller input so that the overshoots and undershoots in its DC link voltage are minimized and the settling time is improved. A three-phase diode rectifier with R-L (Resistive-Inductive) load is used as a non-linear load to study the effectiveness of the proposed controller of the AF. Robustness to filter parameter variations, insensitivity to controller parameter variations, and transient response has been taken as performance evaluation parameters. The results are shown through simulations in Matlab using power system block sets to demonstrate the capability of the proposed controller of the AF.

앞먹임/되먹임 제어기를 이용한 밀폐공간내 소음의 능동제어 (Active Control of the Noise Fields in the Enclosure using the Feedforward and Feedback Controller)

  • 김인수;김영식;홍석윤;허현무
    • 소음진동
    • /
    • 제4권4호
    • /
    • pp.497-505
    • /
    • 1994
  • This paper presents a design scheme of the active noise absorber that consists of the feedforward and feedback controller. The feedback controller aims to increase damping for the specific acoustic mode. The feedforward controller synthesizes the input signal coherent with the primary noise source in order to attenuate the noise field in the broad frequency range. The feedforward controller is adapted to the variation of acoustic plants using the proposed algorithm which compensates the effect of feedback link. Experimental results demonstrate that the proposed method is effective for the active control of band-limited noise fields in the enclosure.

  • PDF

도로 소음 저감을 위한 능동소음제어 시스템의 개발 및 기초실험 (Development and Basic Experiment of Active Noise Control System for Reduction of Road Noise)

  • 문학룡;강원평;임유진
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.41-47
    • /
    • 2013
  • PURPOSES : The purpose of this study is about noise which is generated from roads and is consist of irregular frequency variation from low frequency to various band. The existing methods of noise reduction are sound barrier that uses insulation material and absorbing material or have applied passive technology of noise reduction by devices. The total frequency band is needed to apply active noise control. METHODS : In this study applies to the field of road traffic environment, signal processing controller and various analog signal input/output, the amplifier module is based on parallel-core embedded processor designed. DSP performs the control algorithm of the road traffic noise. Noise sources in the open space performance of evaluation were applied. In this study, controller of active signal processor was designed based on the module of audio input/output and main controller of embedded process. The controller of active signal processor operates noise reduction algorithm and performance tests of noise reduction in inside and outside environment were executed. RESULTS : The signal processing controller with OMAP-L137 parallel-core processors as the center, DSP processors in the active control operations dealt with quickly. To maximize the operation speed of an object and ARM processor is external function keys and display for functions and evaluating the performance management system was designed for the purpose of the interface. Therefore the reduction of road traffic noise has established an electronic controller-based noise reduction. CONCLUSIONS : It is shown that noise reduction is effective in the case of pour tonal sound and complex tonal sound below 500Hz by appling to Fx-LMS.

가속도 피이드백 제어기를 이용한 세탁기의 능동진동제어 (Active Vibration Control of Washing Machine by Acceleration Feedback Controller)

  • 김승기;곽문규;양동호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.28-31
    • /
    • 2014
  • This paper is concerned with the active vibration control of washing machine. To this end, a new control algorithm utilizing an acceleration signal as a sensor signal is newly developed based on the principle of a dynamic absorber. The resulting control algorithm was implemented digitally on the DSP board. The accelerometer and the active linear actuator were used as sensor and actuator for the active vibration control of washing machine. Experimental results show that the proposed control algorithm can be effectively used for a controller which uses an accelerometer.

  • PDF

$H_2$ 제어기를 이용한 외팔보의 능동 진동 제어 (Active Vibration Control of A Cantilever Beam Using $H_2$ Controllers)

  • 최수영;정준홍;박기헌
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권7호
    • /
    • pp.401-409
    • /
    • 2003
  • This paper describes the design and the performance analysis of an $H_2$ controller for noncollocated active vibrating systems. An experiment for the active vibration control of a flexible structure is performed. The experimental model used is a cantilever beam controlled by an active damping system consisting of a laser sensor and an electromagnetic actuator. The $H_2$ controller design is based on the reduced order model and the designed system is capable of attenuating vibration without causing spillover instability. The design procedure to prevent spillover instability is described via the sensitivity analysis. The performances of the controller are verified by experimental results.

단일칩 능동 소음 제어기 및 평가 시스템 개발 (Development of A Single-Chip Active Noise Controller And Its Evaluation System)

  • 정익주
    • 대한임베디드공학회논문지
    • /
    • 제16권6호
    • /
    • pp.241-246
    • /
    • 2021
  • In this paper, we developed the evaluation system for the active noise control so that the algorithms can be easily evaluated in real-time on the system. We implemented the active noise controller based on a single-chip with only additional op-amps for signal conditioning because the TMS320C280049 MCU includes almost all necessary peripherals for the active noise controller. Due to the difficulty in testing algorithms on embedded-type hardware unlike in computer simulation, we also developed GUI-based evaluation software which makes it simple to test algorithms on the hardware. Using the GUI software, we can optimize the parameters of the algorithms with ease in a specific noise environment because the parameters can be adjusted in real-time when the algorithm is running on the hardware.

강인 포화 제어기의 LMI 최적 설계를 이용한 구조물의 능동 진동 제어 (Active Vibration Control of Structure Using LMI Optimization Design of Robust Saturation Controller)

  • 박영진;문석준;임채욱
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.298-306
    • /
    • 2006
  • In our previous paper, we developed a robust saturation controller for the linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. This controller can only guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. But we cannot analytically make any comment on control performance of this controller. In this paper, we suggest a method to use linear matrix inequality (LMI) optimization problem which can analytically explain control performance of this robust saturation controller only in nominal system. The availability of design method using LMI optimization problem for this robust saturation controller is verified through a numerical example for the building with an active mass damper (AMD) system.