• Title/Summary/Keyword: active contour.

Search Result 224, Processing Time 0.024 seconds

Difference Edge Acquisition for B-spline Active Contour-Based Face Detection (B-스플라인 능동적 윤곽 기반 얼굴 검출을 위한 차 에지 영상 획득)

  • Kim, Ga-Hyun;Jung, Ho-Gi;Suhr, Jae-Kyu;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.19-27
    • /
    • 2010
  • This paper proposes a method for enhancing detection performance and reducing computational cost when detecting a human face by applying B-spline active contour to the frame difference of consecutive images. Firstly, the method estimates amount of user's motion using kurtosis. If the kurtosis is smaller than a pre-defined threshold, it is considered that the amount of user's motion is insufficient and thus the contour fitting is not applied. Otherwise, the contour fitting is applied by exploiting the fact that the amount of motion is sufficient. Secondly, for the contour fitting, difference edges are detected by combining the distance transformation of the binarized frame difference and the edges of current frame. Lastly, the face is located by assigning the contour fitting process to the detected difference edges. Kurtosis-based motion amount estimation can reduce a computational cost and stabilize the results of the contour fitting. In addition, distance transformation-based difference edge detection can enhance the problems of contour lag and discontinuous difference edges. Experimental results confirm that the proposed method can reduce the face localization error caused by the contour lag and discontinuity of edges, and decrease the computational cost by omitting approximately 39% of the contour fitting.

A Fast Snake Algorithm for Tracking Multiple Objects

  • Fang, Hua;Kim, Jeong-Woo;Jang, Jong-Whan
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.519-530
    • /
    • 2011
  • A Snake is an active contour for representing object contours. Traditional snake algorithms are often used to represent the contour of a single object. However, if there is more than one object in the image, the snake model must be adaptive to determine the corresponding contour of each object. Also, the previous initialized snake contours risk getting the wrong results when tracking multiple objects in successive frames due to the weak topology changes. To overcome this problem, in this paper, we present a new snake method for efficiently tracking contours of multiple objects. Our proposed algorithm can provide a straightforward approach for snake contour rapid splitting and connection, which usually cannot be gracefully handled by traditional snakes. Experimental results of various test sequence images with multiple objects have shown good performance, which proves that the proposed method is both effective and accurate.

Refinement of Building Boundary using Airborne LiDAR and Airphoto (항공 LiDAR와 항공사진을 이용한 건물 경계 정교화)

  • Kim, Hyung-Tae;Han, Dong-Yeob
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.136-150
    • /
    • 2008
  • Many studies have been carried out for automatic extraction of building by LiDAR data or airphoto. Combining the benefits of 3D location information data and shape information data of image can improve the accuracy. So, in this research building recognition algorithm based on contour was used to improve accuracy of building recognition by LiDAR data and elaborate building boundary recognition by airphoto. Building recognition algorithm based on contour can generate building boundary and roof structure information. Also it shows better accuracy of building detection than the existing recognition methods based on TIN or NDSM. Out of creating buffers in regular size on the building boundary which is presumed by contour, this research limits the boundary area of airphoto and elaborate building boundary to fit into edge of airphoto by double active contour. From the result of this research, 3D building boundary will be able to be detected by optimal matching on the constant range of extracted boundary in the future.

  • PDF

Active Fusion Model with Robustness against Partial Occlusions (부분적 폐색에 강건한 활동적 퓨전 모델)

  • Lee Joong-Jae;Lee Geun-Soo;Kim Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.35-46
    • /
    • 2006
  • The dynamic change of background and moving objects is an important factor which causes the problem of occlusion in tracking moving objects. The tracking accuracy is also remarkably decreased in the presence of occlusion. We therefore propose an active fusion model which is robust against partial occlusions that are occurred by background and other objects. The active fusion model is consisted of contour-based md region-based snake. The former is a conventional snake model using contour features of a moving object and the latter is a regional snake model which considers region features inside its boundary. First, this model classifies total occlusion into contour and region occlusion. And then it adjusts the confidence of each model based on calculating the location and amount of occlusion, so it can overcome the problem of occlusion. Experimental results show that the proposed method can successfully track a moving object but the previous methods fail to track it under partial occlusion.

Visual Tracking Technique Based on Projective Modular Active Shape Model (투영적 모듈화 능동 형태 모델에 기반한 영상 추적 기법)

  • Kim, Won
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.77-89
    • /
    • 2009
  • Visual tracking technique is one of the essential things which are very important in the major fields of modern society. While contour tracking is especially necessary technique in the aspect of its fast performance with target's external contour information, it sometimes fails to track target motion because it is affected by the surrounding edges around target and weak egdes on the target boundary. To overcome these weak points, in this research it is suggested that PDMs can be obtained by generating the virtual 6-DOF motions of the mobile robot with a CCD camera and the image tracking system which is robust to the local minima around the target can be configured by constructing Active Shape Model in modular base. To show the effectiveness of the proposed method, the experiment is performed on the image stream obtained by a real mobile robot and the better performance is confirmed by comparing the experimental results with the ones of other major tracking techniques.

Infant Retinal Images Optic Disk Detection Using Active Contours

  • Charmjuree, Thammanoon;Uyyanonvara, Bunyarit;Makhanov, Stanislav S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.312-316
    • /
    • 2004
  • The paper presents a technique to identify the boundary of the optic disc in infant retinal digital images using an approach based on active contours (snakes). The technique can be used to be develop a automate system in order to help the ophthalmologist's diagnosis the retinopathy of prematurity (ROP) disease which may occurred on preterm infant,. The optic disc detection is one of the fundamental step which could help to create an automate diagnose system for the doctors we use a new kind of active contour (snake) method has been developed by Chenyang et. al. [1], based on a new type of external force field, called gradient vector flow, or GVF. GVF is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image. The testing results on a set of infant retinal ROP images verify the effectiveness of the proposed methods. We show that GVF has a large capture range and it's able to move snakes into boundary concavities of optic disc and finally the optic disk boundary was determined.

  • PDF

Extraction of Heart Region in EBT Images (EBT 영상에서 심장 영역의 추출)

  • Kim, Hyun-Soo;Lee, Sung-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2000
  • It is very important to extract the heart region in the medical images. In this paper, we present the automatic heart region extraction in the EBT (electron beam tomography) images. We use contrast thresholding, anatomic knowledge, and mathematical morphology to extract the heart region. Using these results, we applied the active contour models (snakes) to search the exact region. We analyzed the experimental results by comparing the results with the results made by medical experts.

  • PDF

A Verification of the Accuracy of the Deformable Model in 3 Dimensional Vessel Surface Reconstruction (혈관표면의 3차원 재구성을 위한 Deformable model의 정확성 검증에 관한 연구)

  • Kim, H.C.;Oh, J.S.;Kim, H.R.;Cho, S.B.;Sun, K.;Kim, M.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.3-5
    • /
    • 2005
  • Vessel boundary detection and modeling is a difficult but a necessary task in analyzing the mechanics of inflammation and the structure of the microvasculature. In this paper we present a method of analyzing the structure by means of an active contour model(using GVF Snake) for vessel boundary detection and 3D reconstruction. For this purpose we used a virtual vessel model and produced a phantom model. From these phantom images we obtained the contours of the vessel by GVF Snake and then reconstructed a 3D structure by using the coordinates of snakes.

  • PDF

The improved image filter for the purpose of controlling the image energy in the Active Contour Model (활성 윤곽선 모델의 영상 에너지 제어를 위한 개선된 영상 필터)

  • 강중욱;최경민;박용희;전병호;김태균
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.520-522
    • /
    • 1998
  • 활성 윤곽선 모델(Active Contour Model : Snake)을 이용한 윤곽선 추출 방법에서는 물체를 검출하기 위해 잠재적 표면(potential surface) 위에서 지역 최소치를 향하여 다양한 힘을 가함으로써 물체의 윤곽선으로 활성 윤곽선 모델을 움직이게 한다. 활성 윤곽선 모델에서 영상의 관심있는 물체를 검출하기 위해서는 영상의 잠재적 표면 위에서 활성 윤곽선 모델이 지역 최소치를 향하여 활동적으로 움직이도록 다양한 힘을 효과적으로 제어해야 한다. 본 논문에서는 활성 윤곽선 모델이 적합한 지역 최소치를 향하여 적절하게 수렴하도록 활성 윤곽선 모델이 움직이는 잠재적 표면을 변형할 수 있는 영상 필터를 제안한다.

  • PDF

A Segmentation Method for a Moving Object on A Static Complex Background Scene. (복잡한 배경에서 움직이는 물체의 영역분할에 관한 연구)

  • Park, Sang-Min;Kwon, Hui-Ung;Kim, Dong-Sung;Jeong, Kyu-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.321-329
    • /
    • 1999
  • Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.

  • PDF