• Title/Summary/Keyword: active compound

Search Result 968, Processing Time 0.029 seconds

Insecticidal Activity of Cinnamon Essential Oils, Constituents, and (E)-Cinnamaldehyde Analogues against Metcalfa pruinosa Say (Hemiptera: Flatidae) Nymphs and Adults (미국선녀벌레(Metcalfa pruinosa Say)에 대한 계피 정유 유래 물질의 살충 활성)

  • Kim, Jun-Ran;Jeong, In-Hong;Lee, Young Su;Lee, Sang-Guei
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.375-382
    • /
    • 2015
  • The insecticidal activity of the constituents of cinnamon essential oils and structurally related compounds against both the nymphs and adults of the citrus flatid planthopper Metcalfa pruinosa was examined using a direct-contact application. The toxicity of the cinnamon oil constituents and 21 (E)-cinnamaldehyde related compounds regarding the nymphs of M. pruinosa was evaluated using a leaf-dipping bioassay. Based on 24 h $LC_{50}$ values, hydro-cinnamic acid ($1.55mg/cm^2$) is the most toxic compound, followed by geranic acid ($1.59mg/cm^2$). The $LC_{50}$ values of 11 of the compounds including cinnamaldehyde are between $1.60mg/cm^2$ and $4.94mg/cm^2$. Low toxicities and no toxicity were observed with the other 15 ($5.24mg/cm^2$ to $13.47mg/cm^2$) and two compounds, respectively. Also, the toxicities of the cinnamon oil constituents and 21 cinnamaldehyde related compounds regarding the M. pruinosa adults were evaluated using a direct-spray method. The toxicity of eugenol (10.81 mg) is the most toxic compound for the adults of M. pruinosa, followed by geranic acid (30.68 mg). The $LC_{50}$ values of nine of the compounds including cinnamaldehyde are between 59.16 mg and 96.70 mg. Low toxicities and no toxicity were observed with the other 15 (105.44 mg to 255.76 mg) and three compounds, respectively. The spray formulations that comprise cinnamon bark and cinnamon green leaf oils resulted in 82.3% and 82.9% mortalities, respectively, toward the M. pruinosa adults in a ginseng field. Global efforts to reduce the level of highly toxic synthetic insecticides in agricultural environments justify further studies on cinnamon oils to ascertain whether the corresponding active principles can act as insecticides, when they are applied as a direct spray with contact action, for the control of M. pruinosa populations.

Changes in physiologically active ingredients and anti-inflammatory properties of underutilized wild vegetables by complex fermentation using beneficial microorganisms (유용미생물에 의한 저이용 산채류의 복합발효 중 생리활성 성분 및 항염증 변화)

  • Sang-Hyeob Sim;Ha KyoungChoi;Da Eun Lee;Soo Chang Na;Dae Il Hwang;Hyo Bin Oh;Yi Teak Lim;Tae-Young Kim;Dae-Woon Kim
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.287-297
    • /
    • 2024
  • It was confirmed that complex fermentation (CF) was more efficient than single-strain fermentations in inducing changes in the contents of phenolic compounds of Maclura tricuspidate and Pyrus Montana Nakai. A mixture of Maclura tricuspidata, Pyrus montana Nakai, Platycodon grandiflorum and Codonopsis lanceolata were fermented in CF using Aspergillus shirousamii (koji), yeast, and lactic acid bacteria (LAB) for 24 days, and the pH, °Brix, total acidity, anti-oxidant activity, polyphenol content, nitric oxide (NO), and Western blotting of inducible nitric oxide synthase (iNOS), cyclo-oxygenase-2 (COX-2), and tumor necrosis factor-𝛼 (TNF-𝛼) of the sample were determined. There was no significant change in pH and total acidity. °Brix significantly decreased from day 6 onwards. HPLC confirmed that the concentrations of chlorogenic acid, 4-hydrobenzoic acid, vanillic acid, and caffeic acid significantly increased from day 18 during the fermentation. Additionally, DPPH, ABTS radical scavenging activity, total phenol, and total flavonoid were confirmed to be increased until 18 days. NO was significantly inhibited from day 6, along with significant inhibition of iNOS, COX-2, and TNF-a. In conclusion, this study confirmed that CF of low-use (or underutilized) wild vegetables enhances phenolic compounds. It effectively suppresses NO, iNOS, COX-2, and TNF-𝛼, markers of inflammation-related pathogenesis. Altogether, our results suggest that CF of the above plants has a potential anti-inflammatory effect.

Characteristic study on the chemical components of Korean curved ginseng products

  • Cho, Chang-Won;Kim, Young-Chan;Kang, Jin-Hee;Rhee, Young Kyoung;Choi, Sang Yoon;Kim, Kyung-Tack;Lee, Young-Chul;Hong, Hee-Do
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.349-354
    • /
    • 2013
  • Dried ginseng (DG) is in fact the representing ginseng product in the worldwide market. Although it is made in various packages depending on the processing method, size and age of DG, basic scientific data reporting the chemical components are limited. In this study, 4-year-old curved ginseng (CG), one of the domestic DG products, was selected for further investigation. Eighty-six samples of 30 and 50 piece-grade CG, which are the most widely distributed in the market, were collected for 5 yr. Their major components, such as moisture, total sugar, acidic polysaccharides, total phenolic compounds, and saponins, were analyzed to figure out the standard quality characteristics. The moisture content of all CG samples was less than 15%. The total water-soluble sugar contents were 22.9% to 47.8% and 23.2% to 49.5% in the 30 and 50 piece-grade CG, respectively. The acidic polysaccharide contents were 3.6% to 6.7% and 2.9% to 6.9% in the 30 and 50 piece-grade CG, respectively. The total phenolic compound content was 0.4% to 0.5% in CG, regardless of the piece-grade. The crude saponin content, which represents the active component of ginseng, was over 2% in all samples. In 30 piece-grade CG samples, the contents of major ginsenosides, Rb1, Rf, and Rg1, were 2.2 to 4.7 mg/g, 0.4 to 1.3 mg/g, and 1.6 to 4.0 mg/g, respectively. The ginsenoside contents in 50 piece-grade CG samples were 2.1 to 3.9 mg/g (Rb1), 0.5 to 1.2 mg/g (Rf), and 1.3 to 3.4 mg/g (Rg1). Overall, since there were relatively high standard deviation and coefficient of variation in all the chemical component contents that were assessed, we found some difficulties in showing the CG standard chemical component characteristics by average, standard deviation, and other statistical analysis factors.

Practical Application of Dioscorea quinqueloba Extract for the Control of Citrus Green Mold (감귤 녹색곰팡이병 방제를 위한 천산용 추출물의 실용적 적용)

  • Lee, Ji Hyun;Kang, Sung Woo;Song, Jeong Young;Kim, Hong Gi
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.354-360
    • /
    • 2012
  • This study tested the antifungal compound obtained from a medicinal plant, Dioscorea quinqueloba Thunb., in order to search the possibility of practical application of this product in agriculture through evaluating its activity using the citrus fruits. The extract of D. quinqueloba Thunb., which has the strongest antifungal activity, was selected as a candidate among 101 plant extracts. Based on this examination concerning antifungal activity of the product on Penicillium digitatum in vitro, it was confirmed its effect of mycelial growth inhibition showed over 87% at 0.5 mg/ml concentration. This natural product showed the stability of the substance, as it was not significantly influenced by pH, temperature, or ultraviolet radiation. While citrus fruits were stored at room temperature, P. digitatum was inoculated into them in order to prepare a similar environmental conditions with epidemic occurrence of the mold. As the result of our investigation, the disease preventive effects of the active antifungal substance evidenced a 100% at 0.5 mg/ml. When the phytotoxicity of the selected natural product on citrus at 2 mg/ml was assessed, we noted no toxic effects. Based on the superior preventive effects from this natural product extracted from the plant, it is presumed to be very useful in agricultural applications for the control of green mold, P. digitatum, which has been occurred often the biggest problem in the storage of citrus fruits.

Inhibitory Effects of Aralia cordata Thunb Extracts on Nitric Oxide Synthesis in RAW 264.7 Macrophage Cells (독활(Aralia cordata Thunb) 추출물의 Nitric Oxide Synthesis 저해효과)

  • Kang, Chang-Ho;Koo, Ja-Ryong;So, Jae-Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.621-627
    • /
    • 2012
  • Assessment was made of the effects of Aralia cordata Thunb (DH) on the cell proliferation, inducible nitric oxide synthase (iNOS) mRNA gene expression and nitric oxide (NO) production in RAW 264.7 macrophage cells. For the screening of anti-inflammatory activities, ethanolic extracts of 55 species of traditional herbal medicines were examined for inhibitory effects, and it was confirmed that DH possessed inhibitory effects on NO production. As a result, DH significantly decreased the production of NO and iNOS gene expression at a concentration of $250{\mu}g/mL$. The chloroformsoluble fractionates have the strongest No synthesis inhibitory effect. It is presumed that the inhibition of NO production in LPS-stimulated RAW 264.7 cells by DH components occurred via the modulation of iNOS and DH, and that the active compound from DH may be useful for therapeutic management of inflammatory-associate diseases.

Antimicrobial Activity of Ethanol Extracts from Medicinal Herbs and Its Active Compound against Plant Pathogens (한약재 주정추출물과 그 유효성분의 식물병원균에 대한 항균활성)

  • Yang, Ji-Yeon;Ryu, Song-Hee;Lim, Sung-Jin;Choi, Geun-Hyoung;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.3
    • /
    • pp.191-201
    • /
    • 2016
  • BACKGROUND: The aim of this study was to investigate the antimicrobial effects of the ethanol extracts from various medicinal herbs against plant pathogens to understand the possible the crop protection agents.METHODS AND RESULTS: Among the tested medicinal herbs, Zizyphus jujuba ethanol extract had the potent antimicrobial activity against Phytophthora capsici, Erwinia carotovorum subsp. carotovora, Pseudomonas syringae pv. syringae and Ralstonia solanacearum. The major constituents of Z. jujuba were identified to eugenol(40.45%), dodecanoic acid(18.40%), β-caryophyllene (10.05%) and isoeugenol(9.85%) by GC/MS. Eugenol and isoeugenol had strong inhibitory activity on spore germination against P. capsici and growth against E. carotovorum subsp. carotovora, P. syringae pv. syringae and R. solanacearum.CONCLUSION: In this regard, eugenol and isoeugenol were found to be responsible for the antimicrobial activity of Z. jujuba ethanol extract against plant pathogens. In addition, Z. jujuba ethanol extract, eugenol and isoeugenol can be used the potent antimicrobial agents.

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

A Study on the Symbolic Meaning of the Costume Colours (복색 상징적 의미에 관한연구)

  • 이순홍
    • Journal of the Korean Society of Costume
    • /
    • v.30
    • /
    • pp.85-99
    • /
    • 1996
  • This study has been made to examine the symbolic meaning of our traditional costume colours based on the theory of yin-yang Wu-hsing the interaction of yin and yang with the rotation of the five agents wood firt earth metal and waters. Presenting the spirt and the life of our race the costume culture has been keep-ing its own systematic symbol. Being sensible the colour has to be under-stood as the colour sense therefore the cos-tume colour has begun to have the symbolic meaning with the feeling or the mental value. According to the theory of yin-yang wu-hsing the costume colour has presented our racial sprit way of thinking and way of life for a long time and it has become the tra-ditional culture at last. Based on the doctrine of cosmic harmony through the motion of yin and yang or the passive and active elements are their five agents form the material force of everything. The order of nature has its counterpart in five symbolic costume colours wood-blue ; fire-red: earth-yellow; metal-white: water-black. The five colours are called the primary colours. which produce the next compound colours. Accepted in the social system as well as the social stats the costume colour has set up systematically. The theory of Yin-yang Wu-hsing has given the five colours the symbolic meanings and its mainstream has been the function of Sangsaeng and Sangeuk which are genera-ted by the power of virture. The former is mu-tually beneficial while the latter destructive. The colour as a costume colour has been made distinction between the colour of the up-per classes and the colour of the middle and lower classes and the specific colour has presented the symbolic meanings. The yeollow the red and the purple have been regarded as the colour of king queen and upper classes Being the colour recognition the costume colour has been established by the society and the race generally Implied the spiritual elements the colour recognition could select the lucky colour in accordance with one's des-tiny. Besides the colour recognition has begun to appear as the racial costumes to protect the society and to pray for good fortune. According to the theory of Yin-yang Wu-hsing the costume colour has been forming through our long history and has become our costume culture. Therefore the colour of the costume has signified not only the colour sense but also the important symbolic meanings.

  • PDF

QSAR on the Inhibition Acticity of Flavopiridol Analogues against Breast Cancer MCF-7 (Flavopiridol 유도체에 의한 유방암 MCF-7 세포의 저해 활성에 관한 구조와 활성과의 관계)

  • Soung, Min-Gyu;Joo, Sung-Mo;Song, Ah-Reum;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.147-153
    • /
    • 2007
  • To search for a molecular design of a new breast cancerous inhibitory active compound, 2D-QSAR and HQSAR between the substituents of flavopiridol analogues as substrates and their breast cancerous inhibitory activities against MCF-7 cell were analyzed and discussed quantitatively. It was found that the dispersion with molecule and steric hindrance with substituents will have a tremendous impact on the inhibitory activities from the 2D-QSAR model (1). Also, MR constant is better than that of MS constant as animportant factor. The inhibitory activities from 2D-QSAR model (2) were dependent upon the optimum MR constant (MR = 126 $Cm^3/mol$). Optimized HQSAR model (V) exhibited the best predictability of the inhibitory activities based on the cross-validated $r^2_{cv}$($q^2$= 0.583) and non-cross-validated conventional coefficient ($r^2_{ncv}$= 0.982). From the contribution maps, the inhibitory activity by the imino group on $C_9$ atom was higher than that of the hydroxyl group of $C_8$ atom on the A ring in molecule. Therefore, we can confirm that the dispersion by substituents in molecule is the most important factor in inhibitory activities against MCF-7 cell.

Development of Biologically Active Compounds from Edible Plant Sources-XIX. Isolation of Inhibitory Compound on LDL-Oxidation from the Aerial Parts of Sajabalssuk (Artemisia princeps PAMPANINI, Sajabalssuk) (식용식물자원으로부터 활성물질의 탐색-XIX. 사자발쑥(Artemisia princeps PAMPANINI, Sajabalssuk)의 전초로부터 저밀도 지질 단백질(LDL) 산화 억제물질의 분리)

  • Bang, Myun-Ho;Song, Myoung-Chong;Han, Min-Woo;Lee, Dae-Young;Jo, Jin-Kyung;Chung, Hae-Gon;Jeong, Tae-Sook;Lee, Kyung-Tae;Choi, Myung-Sook;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.224-227
    • /
    • 2007
  • Sajabalssuk (Artemisia princeps PAMPANINI) was extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_{2}O$, successively. From the EtOAc fraction, two phenylpropanoids were isolated through the repeated silica gel and ODS column chromatographies. From the results of physico-chemical data including NMR, MS and IR, the chemical structures of the phenylpropanoids were determined as eugenol (1) and (-)-sesamin (2). They were the first to be isolated from Sajabalssuk (Artemisia princeps PAMPANINI, Sajabalssuk). Also, eugenol inhibited LDL-oxidation with the inhibitory activity of 87.8 ${\pm}$ 1.0% at a concentration of 40 ${\mu}g/ml$.