• Title/Summary/Keyword: active antenna

Search Result 288, Processing Time 0.027 seconds

Design of Active Antenna Diplexers Using UWB Planar Monopole Antennas (초광대역 평면형 모노폴 안테나를 이용한 능동 안테나 다이플렉서의 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1098-1106
    • /
    • 2007
  • This paper presents active antenna diplexers implemented into an ultra-wideband CPW(Coplanar Waveguide) fed monopole antennas. The proposed active antenna diplexer is designed to direct interconnect the output port of a wideband antenna to the input port of two active(HEMT) devices, where the impedance matching conditions of the proposed active integrated antenna are optimized by adjusting CPW(Coplanar Waveguide) feed line to be the length of 1/20 $\lambda_0$(@5.8 GHz) in planar type wideband antenna. The measured bandwidth of the active integrated antenna shows the range from 2.0 GHz to 3.1 GHz and from 5.25 GHz to 5.9 GHz. The measured peak gains are 17.0 dB at 2.4 GHz and 15.0 dB at 5.5 GHz.

Design of Folded Monopole Internal Antenna for KPCS Mobile Phone Handset (휴대폰용 접힌 모노폴 내장형 안테나 설계)

  • Son, Tae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.113-118
    • /
    • 2007
  • KPCS internal antenna in this paper, is designed and fabricated using the theory based on the folded monopole antenna. I propose folded monopole internal antenna which has high gain low profile structure with easy installation into the handset of mobile phone. Design frequency is 1.8 GHz that is a center frequency of Korea PCS frequency band, and the impedance variances due to change of antenna structure as a length and width are simulated. Measurements show that input VSWR range under 2:1 is 1.72 - 1.88 GHz, and radiated H-plane pattern is omnidirectional under passive state. Active sensitivities and output power of phone applied antenna are $-105\;{\sim}\;-108\;dBm$ and $22.5\;{\sim}\;23.6\;dBm$ max., respectively.

  • PDF

Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

  • Hwang, Sungyoun;Lee, Bomson;Kim, Dong Hwan;Park, Joon Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (2.8-3.3 GHz) is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs) for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a $1{\times}8$ array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ${\pm}53^{\circ}$ based on a -10 dB active reflection coefficient. The operation of the scan angle is possible within ${\pm}60^{\circ}$ with a little larger reflection coefficient (-7 dB to -8 dB). The proposed design with BC-SRRs is expected to be useful for PAA applications.

3D Beamforming Techniques in Multi-Cell MISO Downlink Active Antenna Systems for Large Data Transmission (대용량 데이터 전송을 위한 다중 셀 MISO 하향 능동 안테나 시스템에서 3D 빔포밍 기법)

  • Kim, Taehoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2298-2304
    • /
    • 2015
  • In this paper, we provide a new approach which optimizes the vertical tilting angle of the base station for multi-cell multiple-input single-output (MISO) downlink active antenna systems (AAS). Instead of the conventional optimal algorithm which requires an exhaustive search, we propose simple and near optimal algorithms. First, we represent a large system approximation based vertical beamforming algorithm which is applied to the average sum rate by using the random matrix theory. Next, we suggest a signal-to-leakage-and-noise ratio (SLNR) based vertical beamforming algorithm which simplifies the optimization problem considerably. In the simulation results, we demonstrate that the performance of the proposed algorithms is near close to the exhaustive search algorithm with substantially reduced complexity.

A Multi-Channel Correlative Vector Direction Finding System Using Active Dipole Antenna Array for Mobile Direction Finding Applications

  • Choi, Jun-Ho;Park, Cheol-Sun;Nah, Sun-Phil;Jang, Won
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.161-168
    • /
    • 2007
  • A fast correlative vector direction finding(CVDF) system using active dipole antenna array for mobile direction finding(DF) applications is presented. To develop the CVDF system, the main elements such as active dipole antenna, multi-channel direction finder, and search receiver are designed and analyzed. The active antenna is designed as composite structure to improve the filed strength sensitivity over the wide frequency range, and the multi-channel direction finder and search receiver are designed using DDS-based PLL with settling time of below 35 us to achieve short signal processing time. This system provides the capabilities of the high DF sensitivity over the wide frequency range and allows for high probability of intercept and accurate angle of arrival(AOA) estimation for agile signals. The design and performance analysis according to the external noise and modulation schemes of the CVDF system with five-element circular array are presented in detail.

Compact Active Integrated Antenna with Rectagular Ring Structure for UHF RFID Reader (UHF RFID Reader용 사각 환형 소형 능동 안테나)

  • Yun, Gi-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.315-322
    • /
    • 2007
  • In this paper, active integrated antenna with left hand circular polarization(LHCP) for a transmitter of UHF RFID reader has been described. A novel rectangular ring patch as a radiator of the active antenna is proposed for easier impedance matching, smaller patch size, and LHCP characteristics. An amplification circuit is placed in the opening area of the radiator and is combined with it to work as oscillating circuit around 915 MHz. From the test results, impedance bandwidth of 29 MHz, 3 dB axial ratio bandwidth of 20 MHz, 3 dB beamwidth of 85 degree, and effective radiation power of 8.8 dBm have been obtained.

A Study on Excitation Error Estimation for Active Phased Array Antenna (능동위상배열안테나의 급전신호 오차 추정에 관한 연구)

  • Jung, Hyeon-Jong;Jung, Jin-Woo;Lim, Yeong-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • The active phased array antenna system performs beam steering, multi-beam formation and adaptive beam forming by controlling the amplitude and phase of signals fed to each radiating element. In order to obtain the desired radiation characteristics using an active phased array antenna system, the accurate amplitude and phase of the signal must be fed to each radiating element; however, due to various causes, the signal errors occurs in each radiating element. In this paper, a signal error estimation method of each radiating element is proposed. The proposed method simplifies the process of signal error estimation, and can quickly and accurately calculate the signal error.

Near-Field Receiving Measurement of Active Phased Array Antenna for Full Digital Radar Application (완전 디지털 레이다에 적용 가능한 능동위상배열안테나 근접전계 수신 시험)

  • Chae, Heeduck;Lee, Jae-Min;Kim, Young-Wan;Kim, HanSaeng;Jin, Hyoung Seog;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.625-634
    • /
    • 2016
  • A full digital receiving active phased array antenna generates final receiving beams by digital beam forming of received digital signals in element-level that makes difficult to use typical near-field measurement method. Thus in this paper, a modified near-field measurement method which is suitable for full digital receiving active phased array antenna is proposed. Also the measured results of receiving beam pattern and G/T using developed L-band full digital receiving active phased array antenna are shown for the verification of proposed method.

Effect of a Finite Substrate on the Radiation Characteristics of a Linear Phased Array Antenna Positioned along the E-plane (유한한 기판 크기가 E-평면으로 배열된 선형 위상 배열 안테나의 방사 특성에 미치는 영향)

  • Kim, Tae-Young;Kim, Gun-Su;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.46-53
    • /
    • 2011
  • The effect of a finite substrate on the radiation characteristics of a linear 7-element array antenna positioned along the E-plane is investigated. Active reflection coefficients and average active element patterns are simulated for various substrate sizes. The E-plane radiation pattern of a fully excited array for various scan angles is correlated with the active reflection coefficient and average acitive element pattern. The effect of E-plane substrate size on the radiation characteristics of a linear array along the E-plane is larger than that of H-plane substarte size.

Analysis of Performance Degradation of Antenna due to Radio Frequency Interference (RFI에 기인한 안테나 성능 저하 분석)

  • Lee, Hosang;Kim, Kwangho;Youn, Jinsung;Lee, Daehee;Hwang, Chanseok;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.651-658
    • /
    • 2017
  • This paper proposes an analysis method of performance degradation of antenna due to radio frequency interference between an antenna and adjacent noise sources using active scattering parameters. The radio frequency interference can be analyzed by the measured or simulated scattering parameters and by excited noise sources in the circuit as well. In this paper, a planar inverted-F antenna and a noise source are designed and fabricated to analyze radio frequency interference between the planar inverted-F antenna and noise source. The proposed analysis method uses active scattering parameters, of which verification is experimentally verified, and in simulation as well.