• Title/Summary/Keyword: active agent

Search Result 776, Processing Time 0.027 seconds

Radially patterned polycaprolactone nanofibers as an active wound dressing agent

  • Shin, Dongwoo;Kim, Min Sup;Yang, Chae Eun;Lee, Won Jai;Roh, Tai Suk;Baek, Wooyeol
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.399-404
    • /
    • 2019
  • Background The objectives of this study were to design polycaprolactone nanofibers with a radial pattern using a modified electrospinning method and to evaluate the effect of radial nanofiber deposition on mechanical and biological properties compared to non-patterned samples. Methods Radially patterned polycaprolactone nanofibers were prepared with a modified electrospinning method and compared with randomly deposited nanofibers. The surface morphology of samples was observed under scanning electron microscopy (SEM). The tensile properties of nanofibrous mats were measured using a tabletop uniaxial testing machine. Fluorescence-stained human bone marrow stem cells were placed along the perimeter of the radially patterned and randomly deposited. Their migration toward the center was observed on days 1, 4, and 7, and quantitatively measured using ImageJ software. Results Overall, there were no statistically significant differences in mechanical properties between the two types of polycaprolactone nanofibrous mats. SEM images of the obtained samples suggested that the directionality of the nanofibers was toward the central area, regardless of where the nanofibers were located throughout the entire sample. Florescence images showed stronger fluorescence inside the circle in radially aligned nanofibers, with significant differences on days 4 and 7, indicating that migration was quicker along radially aligned nanofibers than along randomly deposited nanofibers. Conclusions In this study, we successfully used modified electrospinning to fabricate radially aligned nanofibers with similar mechanical properties to those of conventional randomly aligned nanofibers. In addition, we observed faster migration along radially aligned nanofibers than along randomly deposited nanofibers. Collectively, the radially aligned nanofibers may have the potential for tissue regeneration in combination with stem cells.

Wound healing effect of regenerated oxidized cellulose versus fibrin sealant patch: An in vivo study

  • Yoon, Hyun Sik;Na, Young Cheon;Choi, Keum Ha;Huh, Woo Hoe;Kim, Ji Min
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.5
    • /
    • pp.289-296
    • /
    • 2019
  • Background: Topical hemostatic agents are used when ligation, electrocauterization, or other conventional hemostatic methods are impractical. Because a hemostatic agent is a foreign body, it can cause foreign body reactions, inflammation, and infections that can interfere with the wound healing process. Therefore, we should select hemostatic agents after considering their effects on wound healing. Here, we compared the effects of hemostatic agents on wound healing in a rectus abdominis muscle defect in rats. Methods: Twelve Sprague Dawley rats were subjected to creation of a $6{\times}6mm$ defect in the rectus abdominis muscle and divided into four groups: control group; group A, Tachosil fibrin sealant patch; group B, Surgicel Fibrillar oxidized regenerated cellulose; and group C, Surgicel Snow oxidized regenerated cellulose. For the histologic analysis, biopsies were performed on the 3rd, 7th, and 27th days. Results: The foreign body reaction was the weakest in group A and most significant in group C. The inflammatory cell infiltration was the weakest in group A and similar in groups B and C. Muscle regeneration differed among periods. The rats in group A were the most active initially, while those in group C showed prolonged activity. Conclusion: Tachosil and Surgicel administration increased inflammation via foreign body reactions, but the overall wound healing process was not significantly affected. The increased inflammation in the Surgicel groups was due to a low pH. We recommend using Tachosil, because it results in less intense foreign body reactions than Surgicel and faster wound healing due to the fibrin action.

Effects of Chemical Composition of Ca(OH)2 and Precursors on the Properties of Fast-Curing Geopolymers (Ca(OH)2와 전구체의 화학 조성이 고속경화 지오폴리머의 물성에 미치는 영향)

  • Ko, Hyunseok;Noh, Jung Young;Lim, Hyung Mi
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.690-696
    • /
    • 2019
  • Geopolymer is an alumina silicate-based ceramic material that has good heat-resistance and fire-resistance; it can be cured at room temperature, and thus its manufacturing process is simple. Geopolymer can be used as a reinforcement or floor finish for high-speed curing applications. In this manuscript, we investigate a high-speed curing geopolymer achieved by adding calcium to augment the curing rate. Metakaolin is used as the main raw material, and aqueous solutions of KOH and $K_2SiO_3$ are used as the activators. As a result of optimizing the high bending strength as a target factor for geopolymers with $SiO_2/Al_2O_3$ ratio of 4.1 ~ 4.8, the optimum ranges of the active agent are found to be $0.1{\leq}K_2O/SiO_2{\leq}0.4$ and $10{\leq}H_2O/K_2O{\leq}32.5$, and the optimum range of the curing accelerator is found to be $$0.82{\leq_-}Ca(OH)_2/Al_2O_3{\leq_-}2.87$$. The maximum flexural strength is found to be 1.35 MPa at $Ca(OH)_2/Al_2O_3=2.82$, $K_2O/SiO_2=0.3$, and $H_2O/K_2O=11.3$. The physical and thermal properties are analyzed to validate the applicability of these materials as industrial insulating parts or repairing finishing materials in construction.

Effect of Lactobacillus casei fermented Senna tora L. seeds and its active compound via muscarinic M3 signaling on the improvement of intestinal function in rats

  • Jang, Ji-Hun;Lee, Ki-Ho;Nho, Jong-Hyun;Lee, Hyun-Joo;Yang, Beo-Dul;Park, Ho;Cho, Hyun-Woo;An, Byeong-Kwan;Kim, Sun-Ra;Yong, Ju-Hyun;Park, Ro-Dong;Jung, Ho-Kyung
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.365-373
    • /
    • 2020
  • We previously reported the potential of Senna tora L. seeds fermented by Lactobacillus casei (FSL) as a laxative agent in a loperamide-induced constipation rat model. Here, we examine the mechanism of action of FSL and its bioactive compound, revealed herein, on loperamide-induced constipation Sprague Dawley rat model. We identified the compound aurantio-obtusin (AO) using HPLC quantitative analysis. Rats were randomly assigned to six experimental groups (eight rats each)-normal and constipated groups (loperamide, FSL [100, 300, 500 mg/kg], and AO [1 mg/kg]). The FSL and AO-treated group showed an increase in the frequency, amount, and water content of feces in the constipated rat. Moreover, FSL and AO increased the intestinal transit speed in the constipated rat. Histological analysis revealed that FSL and AO recovered the intestinal mucus, the number of goblet cells, as well as thickness of the mucosa layer and muscle. Furthermore, the protein levels of the muscarinic acetylcholine receptor M3, which is involved in intestine contraction, were recovered in the FSL and AO-treated group. Its downstream signaling pathway (p-protein kinase C) was recovered by FSL and AO treatment. In conclusion, fermentation of S. tora L. seeds increases AO, which improves intestinal function, indicating that FSL is effective for treating constipation.

KF-1607, a Novel Pan Src Kinase Inhibitor, Attenuates Obstruction-Induced Tubulointerstitial Fibrosis in Mice

  • Dorotea, Debra;Lee, Seungyeon;Lee, Sun Joo;Lee, Gayoung;Son, Jung Beom;Choi, Hwan Geun;Ahn, Sung-Min;Ha, Hunjoo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2021
  • Src family kinases (SFKs), an important group of non-receptor tyrosine kinases, are suggested to be excessively activated during various types of tissue fibrosis. The present study investigated the effect of KF-1607, an orally active and a newly synthesized Src kinase inhibitor (SKI) with proposed low toxicity, in preventing the progression of renal interstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed in 6-week-old male C57BL/6 mice to induce renal interstitial fibrosis. Either KF-1607 (30 mg/kg, oral gavage) or PP2 (2 mg/kg, intraperitoneal injection), a common experimental SKI, was administered to mice for seven days, started one day prior to surgery. UUO injury-induced SFK expression, including Src, Fyn, and Lyn kinase. SFK inhibition by KF-1607 prevented the progression of tubular injury in UUO mice, as indicated by decreases in albuminuria, urinary KIM-1 excretion, and kidney NGAL protein expression. Renal tubulointerstitial fibrosis was attenuated in response to KF-1607, as shown by decreases in α-SMA, collagen I and IV protein expression, along with reduced Masson's trichrome and collagen-I staining in kidneys. KF-1607 also inhibited inflammation in the UUO kidney, as exhibited by reductions in F4/80 positive-staining and protein expression of p-NFκB and ICAM. Importantly, the observed effects of KF-1607 were similar to those of PP2. A new pan Src kinase inhibitor, KF-1607, is a potential pharmaceutical agent to prevent the progression of renal interstitial fibrosis.

In vitro Antimicrobial Activities of Edible Seaweeds Extracts Against Cutibacterium acnes (여드름균(Cutibacterium acnes)에 대한 해조류 추출물의 항균효과)

  • Lee, Myeong Seok;Yim, Mi-Jin;Lee, Jeong Min;Lee, Dae-Sung;Kim, Mog-Young;Eom, Sung-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.1
    • /
    • pp.111-117
    • /
    • 2021
  • The study was aimed at developing an alternative therapeutic agent against acne vulgaris, one of the most common skin diseases, to meet the continuing demand for new therapies. Acne vulgaris is often associated with the acne-causing bacteria such as Cutibacterium acnes. To investigate the safety of agents against acne vulgaris, we evaluated the potential antibacterial activities of edible seaweeds against C. acnes in Korea. Forty-one edible seaweeds, including the brown, green, and red varieties, were selected for the antibacterial test. In comparison with other seaweeds, 70% ethanolic extracts of brown seaweeds, such as Cladophora wrightiana var. minor, Eisenia bicyclis, Ecklonia cava, Ishige foliacea, Ishige okamurae, Sargassum filicinum, and Sargassum miyabei Yendo, exhibited potential antibacterial activity against C. acnes with minimum inhibitory concentrations ranging between 64 and 128 ㎍/mL. To investigate the active anti-acne agents and to enhance our understanding of the antibacterial activities against C. acnes, further solvent-fractionation experiments are warranted. The findings imply that brown seaweeds can be a potential source of natural agents against acne vulgaris.

Surface Damage and Bleaching Effect according to the Application Type of Home Tooth Bleaching Applicants

  • Tak, Na-Yeoun;Lim, Do-Seon;Lim, Hee-Jung;Jung, Im-Hee
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.252-260
    • /
    • 2020
  • Background: In this study, the bleaching effect and surface damage of two types of over-the-counter home tooth bleaching agents were explored using an in vitro study of bleaching agents applied to bovine teeth specimens for 14 days. Methods: Domestic over-the-counter home tooth bleaching agents of gel and patch form that shared common active ingredients and manufacturers were selected and tested. The experiment specimens were made using composite resin with bovine tooth samples and then measured the initial microhardness. Specimens were then divided into a Gel group and a Patch group and underwent bleaching treatment once a day for two weeks for 30 to 60 minutes (recommended) or 7 hours. All specimens were coffee-stained prior to bleaching. The bleaching effect was measured using a spectrophotometer and surface damage was measured using a microhardness meter. Results: The difference in color following the bleaching procedure was positive in both the Gel and Patch group, although there were no statistically significant differences in bleaching effect between groups. There was no significant difference in bleaching effect based on duration. The microhardness test revealed that both the Gel group and the Patch group had surface damage after bleaching. The greatest surface damage was found in the Patch group that had undergone a 7-hour bleaching treatment, although the differences were not statistically significant. Conclusion: The bleaching effect of the home tooth bleaching agent was visible to the naked eye. However, longer applications than recommended did not result in greater bleaching, unlike consumers' expectations, and instead increased the chance of enamel damage. As such, there is a need for consumers to be alert and adhere to recommendations provided by each company.

In vitro screening of extracts from 38 marine animal resources for novel cosmeceutical activities

  • Im, Seung Tae;Jang, Yebin;Park, Subin;Mun, Haeun;Kim, Dong Sam;Lee, Dae-Sung;Lee, Jeong-Min;Yim, Mi-Jin;Kim, Ji-Yul;Kim, Hyun-Soo;Ko, Seok-Chun;Jung, Won-Kyo;Lee, Seung-Hong
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.6
    • /
    • pp.327-334
    • /
    • 2022
  • Marine resources have various biological activities and their constituents are more novel than those of land organisms. Several biologically active constituents have been found in marine organisms. Recently, many studies have reported that marine animals (MAs) can be used as functional ingredients in functional foods or nutraceutical due to their health benefits. However, no studies have extensively investigated the cosmeceutical activities of MAs extracts. Here, 70% ethanol extracts of 38 MAs were investigated for their activities of whitening and anti-aging properties for use as materials in novel cosmeceuticals. Anti-aging activities were determined by skin aging-related enzyme activities (anti-collagenase, anti-elastase, anti-hyaluronidase) and whitening activities (anti-tyrosinase, anti-3,4-dihydroxyl-L-phenylalanine [DOPA] oxidation) evaluated by colorimetric method. Among the 38 MAs, we found that Urechis unicinctus and Petrosia corticata extracts showed the strongest inhibitory effects against tyrosinase and DOPA oxidation, respectively. Our results additionally showed that Protankyra bidentata extract might provide a major source of anti-hyaluronidase and anti-elastase; meanwhile, anti-collagenase effects were similar in most MAs. Overall, these results suggest that extracts of marine animals have potential as a tyrosinase, collagenase, elastase, and hyaluronidase inhibitors. Taken together, MA resources could be considered as a novel cosmeceutical agent to be applied in cosmetic industry.

Investigation of the effect of Terminalia chebula fruit extract and its active ingredient, gallic aicd on muscle differentiation (가자(訶子) 추출물과 그 유효성분 갈산이 근분화에 미치는 영향)

  • Cheon, Seonghye;Lee, Hyo Seong;Han, Hyo Sang;Kim, Kee Kwang
    • The Korea Journal of Herbology
    • /
    • v.34 no.2
    • /
    • pp.59-66
    • /
    • 2019
  • Objectives : Decrease in muscle mass and loss of muscle function due to aging are associated with various diseases. As interest in healthy aging increases, efforts to prevent and treat muscle hypoxia as an illness are increasing. Considering the physical limitations, a pharmacologic approach to the treatment of myopenia is needed. Methods : Terminalia chebula Rets has a wide range of pharmacological effects and is used as a medicinal product in traditional medicine. However, the drug effect on the treatment of muscle disorders has not been revealed. The purpose of this study was to evaluate the value of water extract of Terminalia chebula (WETC) as a therapeutic agent to relieve symptoms of muscle hypoxia. Results : WETC showed strong radical scavenging ability. In addition, WETC increased cell activity of myoblast, and we observed that WETC induces myoblast differentiation by immunoblot analysis using differentiation protein markers as well as cell morphology of myoblast. Based on these results, we examined the effect of chebulic acid, chebulagic acid, gallic acid, geraniin, and punicalagin on cell activity and differentiation of myoblasts. Gallic acid significantly increased cell activity of myoblast, and it was found to be an effective substance which not only induces myoblast differentiation but also promotes proliferation. Conclusions : We suggest that the WETC with antioxidant effect and its indicator gallic acid on cell activity, proliferation and differentiation of myoblast can be studied and developed as a food and medicine for prevention and treatment of various muscle diseases.

Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera)

  • Lee, Seoung Rak;Lee, Bum Soo;Yu, Jae Sik;Kang, Heesun;Yoo, Min Jeong;Yi, Sang Ah;Han, Jeung-Whan;Kim, Sil;Kim, Jung Kyu;Kim, Jin-Chul;Kim, Ki Hyun
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.357-366
    • /
    • 2022
  • Background: Withania somnifera (Solanaceae), generally known as Indian ginseng, is a medicinal plant that is used in Ayurvedic practice for promoting health and longevity. This study aims to identify the bioactive metabolites from Indian ginseng and elucidate their structures. Methods: Withanolides were purified by chromatographic techniques, including HPLC coupled with LC/MS. Chemical structures of isolated withanolides were clarified by analyzing the spectroscopic data from 1D and 2D NMR, and HR-ESIMS experiment. Absolute configurations of the withanolides were established by the application of NMR chemical shifts and ECD calculations. Anti-adipogenic activities of isolates were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time PCR (qPCR). Results: Phytochemical examination of the roots of Indian ginseng afforded to the isolation of six withanolides (1-6), including three novel withanolides, withasilolides GeI (1-3). All the six compounds inhibited adipogenesis and suppressed the enlargement of lipid droplets, compared to those of the control. Additionally, the mRNA expression levels of Fabp4 and Adipsin, the adipocyte markers decreased noticeably following treatment with 25 µM of 1-6. The active compounds (1-6) also promoted lipid metabolism by upregulating the expression of the lipolytic genes HSL and ATGL and downregulating the expression of the lipogenic gene SREBP1. Conclusion: The results of our experimental studies suggest that the withasilolides identified herein have anti-adipogenic potential and can be considered for the development of therapeutic strategies against adipogenesis in obesity. Our study also provides a mechanistic rationale for using Indian ginseng as a potential therapeutic agent against obesity and related metabolic diseases.