• Title/Summary/Keyword: activation force

Search Result 200, Processing Time 0.024 seconds

Myoplasmic [$Ca^{2+}$], Crossbridge Phosphorylation and Latch in Rabbit Bladder Smooth Muscle

  • Kim, Young-Don;Cho, Min-Hyung;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • Tonic smooth muscle exhibit the latch phenomenon: high force at low myosin regulatory light chains (MRLC) phosphorylation, shortening velocity (Vo), and energy consumption. However, the kinetics of MRLC phosphorylation and cellular activation in phasic smooth muscle are unknown. The present study was to determine whether $Ca^{2+}$-stimulated MRLC phosphorylation could suffice to explain the agonist- or high $K^+$-induced contraction in a fast, phasic smooth muscle. We measured myoplasmic [$Ca^{2+}$], MRLC phosphorylation, half-time after step-shortening (a measure of Vo) and contractile stress in rabbit urinary bladder strips. High $K^+$-induced contractions were phasic at both $22^{\circ}C$ and $37^{\circ}C$: myoplasmic [$Ca^{2+}$], MRLC phosphorylation, 1/half-time, and contractile stress increased transiently and then all decreased to intermediate values. Carbachol (CCh)-induced contractions exhibited latch at $37^{\circ}C$: stress was maintained at high levels despite decreasing myoplasmic [$Ca^{2+}$], MRLC phosphorylation, and 1/half-time. At $22^{\circ}C$ CCh induced sustained elevations in all parameters. 1/half-time depended on both myoplasmic [$Ca^{2+}$] and MRLC phosphorylation. The steady-state dependence of stress on MRLC phosphorylation was very steep at $37^{\circ}C$ in the CCh- or $K^+$-depolarized tissue and reduced temperature flattend the dependence of stress on MRLC phosphorylation compared to $37^{\circ}C$. These data suggest that phasic smooth muscle also exhibits latch behavior and latch is less prominent at lower temperature.

Study on activation of job creation in Pyeongtaek area through natural dyeing education (천연염색 교육을 통한 평택지역 일자리창출 활성화 연구)

  • Park, HyeSook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.117-122
    • /
    • 2020
  • In this study, among the new industries that are attracting attention as a new industry to lead the 4th Industrial Revolution era, Korean traditional culture and arts are being promoted in the context of local community efforts and collaboration between industry and academia. It aims to create jobs through local traditional culture, arts, tourism events and design product development, while seeking ways to secure labor force that can save and revitalize high value-added industries in the community. In particular, in the current situation where the era of change and the education of traditional techniques are increasingly ignored and neglected, this study is a traditional cultural art through natural dyeing education and cultural and art events conducted by industry, regional universities, and research institutes in Pyeongtaek for many years. It is expected to be used as a basic data for the transmission and creation of high value-added jobs.

A Comparison of Muscle Contraction Using Functional Electrical Stimulation: Intermittent High Frequency Alternating Stimulation Versus Intermittent Low Frequency Synchronous Stimulation (기능적 전기자극기를 이용한 간헐적 고주파 교대자극과 간헐적 저주파 동시자극의 근 수축력 비교)

  • Song, Young-Hee;Cho, Sang-Hyun;Lee, Young-Hee
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.115-131
    • /
    • 2002
  • Functional electrical stimulation (FES) training of the knee extensors is a useful way to rehabilitate the ability to stand and walk. However, training using FES has not been able to solve the problem of fatigue; clinical application of FES quickly produces muscle fatigue, due to the continuous activation of the muscles of the lower extremity. Therefore, reduction of muscle fatigue is an important factor in increasing the effectiveness of FES training in paraplegia. Intermittent high frequency alternating stimulation is a method that combines the advantages of high frequency (leading to strong muscle contractions) and alternating stimulation (reducing muscle fatigue), thereby continuously strengthening muscles. It is not known whether low frequency simultaneous stimulation results in stronger muscle contraction than high frequency alternating stimulation. This study compared the effectiveness of high frequency alternating stimulation with low frequency synchronized stimulation. Muscle power using FES on the quadriceps of 20 normal subjects were compared. Intermittent high frequency alternating stimulation did not produce more powerful muscle contraction than intermittent low frequency synchronized stimulation, because the muscle characteristics differed individually. Significant individual variation according to muscle characteristics was founded when applying FES. Accordingly, when physical therapists use FES to treat patients, they must be aware of individual variation in muscle characteristics.

  • PDF

The Role of Na-K Pump in the Modulation of Vascular Tone in the Rabbit (혈관 긴장도 조절에 미치는 Na-K Pump에 관한 연구)

  • Kim, Ki-Whan;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1982
  • Force development of smooth muscle cells is directly regulated by the concentration of free calcium ions in the sarcoplasm, and the sarcoplasmic concentration of calcium ion can be modulated by electrogenic Na-K pump. The role of Na-K pump on vascular tone was studied in isolated rabbit renal artery. Helical strips of arterial muscle were prepared from left renal arteries. All experiments were performed in $HCO_3^--buffered$ Tyrode solution which was aerated with $3%CO_2-97%\;O_2$ mixed gas and kept at $35^{\circ}C$. In some experiments, rabbit was injected intraperitoneally $18{\sim}24$ hours prior to the experiments, with a large dose(5 mg/kg body wt) of reserpine, in order to eliminate the catecholamines present in intrinsic adrenergic nerve terminate. Treatment used in this experiment that inhibits Na-K pump was the exposure of strips to K-free Tyrode solution. Contractile response to K free Tyrode solution developed slowly and the time required for maximum contracture was $20{\sim}30$ minutes. This K-free contracture was rapidly relaxed by the addition of potassium to the bathing solution. No K-free contracture occurred in a Ca-free Tyrode solution. But contraction developed rapidly when calcium ion was added to the bathing solution after 30 minute exposure of the strip to Ca-free Tyrode solution. This contracture was completely inhibited by Ca-antagonist, verapamil. The K-free contracture was abolished by ${\alpha}-adrenergic$ blocker, phentolamine, as well as by the catecholamine depletion from adrenergic nerve terminals. Even in reserpinized strip, the exogenous norepinephrine-induced contraction in K-free Tyrode solution was rapidly suppressed by the addition of potassium ion. The results of this experiment suggest that K free contracture develops by norepinephrine release from adrenergic nerve terminals, while the relaxation of K-free contracture is induced by the activation of electrogenic Na-K pump.

  • PDF

Modeling of Arrhythmogenic Automaticity Induced by Stretch in Rat Atrial Myocytes

  • Youm, Jae-Boum;Leem, Chae-Hun;Zhang, Yin Hua;Kim, Na-Ri;Han, Jin;Earm, Yung-E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.267-274
    • /
    • 2008
  • Since first discovered in chick skeletal muscles, stretch-activated channels (SACs) have been proposed as a probable mechano-transducer of the mechanical stimulus at the cellular level. Channel properties have been studied in both the single-channel and the whole-cell level. There is growing evidence to indicate that major stretch-induced changes in electrical activity are mediated by activation of these channels. We aimed to investigate the mechanism of stretch-induced automaticity by exploiting a recent mathematical model of rat atrial myocytes which had been established to reproduce cellular activities such as the action potential, $Ca^{2+}$ transients, and contractile force. The incorporation of SACs into the mathematical model, based on experimental results, successfully reproduced the repetitive firing of spontaneous action potentials by stretch. The induced automaticity was composed of two phases. The early phase was driven by increased background conductance of voltage-gated $Na^+$ channel, whereas the later phase was driven by the reverse-mode operation of $Na^+/Ca^{2+}$ exchange current secondary to the accumulation of $Na^+$ and $Ca^{2+}$ through SACs. These results of simulation successfully demonstrate how the SACs can induce automaticity in a single atrial myocyte which may act as a focus to initiate and maintain atrial fibrillation in concert with other arrhythmogenic changes in the heart.

A Study on the Microstructure and Electrical Properties of ZnO:Pr Varistor with $Y_2O_3$Additive ($Y_2O_3$ 첨가에 따른 ZnO:Pr 바리스터의 미세구조 및 전기적 특성에 관한 연구)

  • 남춘우;정순철;이외천
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.48-56
    • /
    • 1998
  • Pr\ulcornerO\ulcorner-based ZnO varistors were fabricated in the range of $Y_2$O$_3$additive content from 0.5 to 4.0mol%, and its microstructure and electrical properties were investigated. Yttrium was distributed nearly in the grain boundaries and the cluster phase formed at nodal point but more in cluster phase. The average grain size was decreased markedly from 34.9 to 8.6${\mu}{\textrm}{m}$ with increasing $Y_2$O$_3$additive content. It is believed that the decrease of grain size is attributed to the formation of cluster phase and the weakening of driving force for liquid sintering. As a result, $Y_2$O$_3$was acted as the inhibitor of the grain growth. With increasing $Y_2$O$_3$additive content, the varistor voltage, the activation energy, and the nonlinear exponent increased whereas the leakage current decreased, especially 4.0mol% $Y_2$O$_3$-added varistor exhibited very good I-V characteristics; nonlinear exponent 87.42 and leakage current 46.77nA. On the other hand, as $Y_2$O$_3$additive content increases, the varistor showed tendency of the salient decrease for donor concentration and the increase for barrier height. Conclusively, it is estimated that ZnO:Pr varistor compositions added more than 2.0mol% $Y_2$O$_3$are to be used to fabricate useful varistors.

  • PDF

Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 고분자막을 통한 물의 이동)

  • Lee, Daewoong;Hwang, Byungchan;Lim, Daehyun;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.338-343
    • /
    • 2019
  • The water transport and water content of the electrolyte membrane greatly affect the performance of the membrane in PEMFC(Proton Exchange Membrane Fuel Cell). In this study, the parameters (electroosmotic coefficient, water diffusion coefficient) of polymer membranes for water transport were measured by a simple method, and water flux and ion conductivity were simulated by using a model equation. One dimensional steady state model equation was constructed by using only the electro-osmosis and diffusion as the driving force of water transport. The governing equations were simulated with MATLAB. The electro-osmotic coefficient of $144{\mu}m$ thick polymer membranes was measured in hydrogen pumping cell, the value was 1.11. The water diffusion coefficient was expressed as a function of relative humidity and the activation energy for water diffusion was $2,889kJ/mol{\cdot}K$. The water flux and ion conductivity results simulated by applying these coefficients showed good agreement with the experimental data.

Mangiferin ameliorates cardiac fibrosis in D-galactose-induced aging rats by inhibiting TGF-β/p38/MK2 signaling pathway

  • Cheng, Jing;Ren, Chaoyang;Cheng, Renli;Li, Yunning;Liu, Ping;Wang, Wei;Liu, Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • Aging is the process spontaneously occurred in living organisms. Cardiac fibrosis is a pathophysiological process of cardiac aging. Mangiferin is a well-known C-glucoside xanthone in mango leaves with lots of beneficial properties. In this study, rat model of cardiac fibrosis was induced by injected with 150 mg/kg/d D-galactose for 8 weeks. The age-related cardiac decline was estimated by detecting the relative weight of heart, the serum levels of cardiac injury indicators and the expression of hypertrophic biomakers. Cardiac oxidative stress and local inflammation were measured by detecting the levels of malondialdehyde, enzymatic antioxidant status and proinflammatory cytokines. Cardiac fibrosis was evaluated by observing collagen deposition via masson and sirius red staining, as well as by examining the expression of extracellular matrix proteins via Western blot analysis. The cardiac activity of profibrotic TGF-β1/p38/MK2 signaling pathway was assessed by measuring the expression of TGF-β1 and the phosphorylation levels of p38 and MK2. It was observed that mangiferin ameliorated D-galactose-induced cardiac aging, attenuated cardiac oxidative stress, inflammation and fibrosis, as well as inhibited the activation of TGF-β1/p38/MK2 signaling pathway. These results showed that mangiferin could ameliorate cardiac fibrosis in D-galactose-induced aging rats possibly via inhibiting TGF-β/p38/MK2 signaling pathway.

Influence of Oxygen Annealing on Temperature Dependent Electrical Characteristics of Ga2O3/4H-SiC Heterojunction Diodes (산소 후열처리가 Ga2O3/4H-SiC 이종접합 다이오드의 온도에 따른 전기적 특성에 미치는 영향 분석)

  • Chung, Seung Hwan;Lee, Hyung Jin;Lee, Hee Jae;Byun, Dong Wook;Koo, Sang Mo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.138-143
    • /
    • 2022
  • We analyzed the influence of post-annealing on Ga2O3/n-type 4H-SiC heterojunction diode. Gallium oxide (Ga2O3) thin films were deposited by radio frequency (RF) sputtering. Post-deposition annealing at 950℃ in an Oxygen atmosphere was performed. The material properties of Ga2O3 and the electrical properties of the diodes were investigated. Atomic Force Microscopy (AFM), X-Ray Diffraction and Scanning Electron Microscope (SEM) images show a significant increase in the roughness and crystallinity of the O2-annealed films. After Oxygen annealing X-ray Photoelectron Spectroscopy (XPS) shows that the atomic ratio of oxygen increases which is related to a decrease in oxygen vacancy within the Ga2O3 film. The O2-annealed diodes exhibited higher on-current and lower leakage current. Moreover, the ideality factor, barrier height, and thermal activation energy were derived from the current-voltage curve by increasing the temperature from 298 - 434K.

Design of Fluorescence Multi-cancer Diagnostic Sensor Platform based on Microfluidics (미세 유체 기반의 형광 다중 암 진단 센서 플랫폼 설계)

  • Lee, B.K.;Khaliq, A.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.55-61
    • /
    • 2022
  • There is a major interest in diagnostic technology for multiple cancers worldwide. In order to reduce the difficulty of cancer diagnosis, a liquid biopsy technology based on a microfluidic device using trace amounts of biofluids such as blood is being studied. And optical biosensing, which measures the concentration of analytes through fluorescence imaging using biofluids, requires various strategies to improve sensitivity, and specialists and equipment are needed to carry out these strategies. This leads to an increase in diagnostic and production costs, and it is necessary to develop a technology to solve this problem. In this paper, we design and propose a fluorescent multi-cancer diagnostic sensing platform structure that implements passive self-separation technology and molecular recognition activation functions by fluid mixing, only with the geometry and microfluidic phenomena of microchannels based on self-driven flow by capillary force. In order to check the parameters affecting the performance of the plasma separation part of the designed sensor, the hydrodynamic diameter of the channel and the viscosity of the fluid were set as variables to confirm the formation of plasma separation flow through simulation. And finally, we propose an optimal sensor platform structure.