• Title/Summary/Keyword: actinides separation

Search Result 15, Processing Time 0.028 seconds

PREDICTION OF A MUTUAL SEPARATION OF ACTINIDE AND RARE EARTH GROUPS IN A MULTISTAGE REDUCTIVE EXTRACTION SYSTEM

  • Yoo, Jae-Hyung;Lee, Han-Soo;Kim, Eung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.663-672
    • /
    • 2007
  • The mutual separation behavior of actinides and rare earths in a countercurrent multistage reductive extraction system was predicted by computer calculation. The distribution information for actinides and rare earths in the reductive extraction systems of LiCl-KCl/Cd and LiCl-KCl/Bi was collected from literature and then it was used for the calculation of a multistage extraction. The results of the concentration profiles throughout the extraction cascade, recovery yields of various metal solutes, and separation factors between the actinides and rare earths were calculated. The effects of the major process parameters, such as reducing agent content in the metal phase, number of stages, and salt/metal flow ratio, etc., on the extraction behavior were also examined.

SELECTIVE REDUCTION OF ACTIVE METAL CHLORIDES FROM MOLTEN LiCl-KCl USING LITHIUM DRAWDOWN

  • Simpson, Michael F.;Yoo, Tae-Sic;Labrier, Daniel;Lineberry, Michael;Shaltry, Michael;Phongikaroon, Supathorn
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.767-772
    • /
    • 2012
  • In support of optimizing electrorefining technology for treating spent nuclear fuel, lithium drawdown has been investigated for separating actinides from molten salt electrolyte. Drawdown reaction selectivity is a major issue that requires investigation, since the goal is to remove actinides while leaving the fission products and other components in the salt. A series of lithium drawdown tests with surrogate fission product chlorides was run to obtain selectivity data with non-radioactive salts, develop a predictive model, and draw conclusions about the viability of using this process with actinide-loaded salt. Results of tests with CsCl, $LaCl_3$, $CeCl_3$, and $NdCl_3$ are reported here. Equilibrium was typically achieved in less than 10 hours of contact between lithium metal and molten salt under well-stirred conditions. Maintaining low oxygen and water impurity concentrations (<10 ppm) in the atmosphere was observed to be critical to minimize side reactions and maintain stable salt compositions. An equilibrium model has been formulated and fit to the experimental data. Good fits to the data were achieved. Based on analysis and results obtained to date, it is concluded that clean separation between minor actinides and lanthanides will be difficult to achieve using lithium drawdown.

Determination of trace actinide (Am, Pu, Th, U) using alpha spectrometry and neutron activation analysis (알파분광법과 중성자방사화분석법에 의한 극미량의 악티늄계원소 (Am, Pu, Th, U)분석연구)

  • Yoon, Yoon Yeol;Lee, Kil Yong;Cho, Soo Young;Kim, Yongjai;Lee, Myong Ho
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2004
  • Determination of actinides in the environmental sample requires separation of each element. This procedure is tedious and time consuming. And also, the detection limits of some nuclides using alpha spectrometry are rather higher. To overcome the lower detection limit and complicated separation procedure, a simple analytical technique for the determination of actinide isotopes in the environmental samples was developed and applied to IAEA and NIST reference sediment samples. For the separation of actinides from matrix, anion exchange resin and TRU-spec extraction chromatography resin were used and chemical yields were obtained using natural uranium, thorium, $^{242}Pu$ and $^{243}Am$ tracers. For overcoming the higher detection limits of U and Th in alpha spectrometry, neutron activation analysis was applied. Using combined method, the detection limit was increased about 10 times. The activity values of each isotope were consistent with the reference values reported by IAEA and NIST.

Separation of Burnup Monitors in Spent Nuclear Fuel Samples by Liquid Chromatography

  • Joe, Kih-Soo;Jeon, Young-Shin;Kim, Jung-Suck;Han, Sun-Ho;Kim, Jong-Gu;Kim, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.569-574
    • /
    • 2005
  • A coupled column liquid chromatography system was applied for the separation of the burnup monitors in spent nuclear fuel sample solutions. A reversed phase column was studied for the adsorption behavior of uranyl ions using alpha-hydroxyisobutyric acid as an eluent and used for the separation of plutonium and uranium. A cation exchange column prepared by coating 1-eicosylsulfate onto the reversed phase column was used for the separation of the lanthanides. In addition, retention of Np was checked with the reversed phase column and cation exchange column, respectively, according to the oxidation states to observe the interference effect for the separation of burnup monitors. This chromatography system showed a great reduction in separation time compared to a conventional anion exchange method. A good agreement from the burnup data was obtained between for this method and a conventional anion exchange method to within 1% of a difference for the spent nuclear fuel samples of about 40 GWD/MTU.

The Reduction of Np(VI) by Acetohydroxamic Acid in Nitric Acid Solution

  • Chung, Dong-Yong;Lee, Eil-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1692-1694
    • /
    • 2005
  • Spent nuclear fuel is reprocessed commercially by the chemical process to recover U and Pu. Recently, new salt-free reagents to separate plutonium and neptunium from uranium suitable for use in a single cycle flowsheet have been developed. Acetohydroxamic acid $(CH_3CONHOH)$ has been taken much interest in as a complexing agent capable of selective stripping of tetravalent actinides from U(VI) when actinides are present in the solvent stream of the advanced PUREX process. Additionally acetohydroxamic acid will rapidly reduce Np(VI) to inextractable Np(V) thus allowing the separation of Np from U. In this study, the rate equation for the reduction of Np(VI) to Np(V) in nitric acid aqueous solution has been determined as: $-[NpO_2^{2+}]$/dt = $k[NpO_2^{2+}]$[AHA] with k = 191.2 ${\pm}$ 11.2 $M^{-1}s^{-1}$ at 25 ${\pm}$ 0.5 ${^{\circ}C}$ and $[HNO_3]$ = 1.0 M. Comparison with other reductants available in the literature, acetohydroxamic acid is a strong one for $NpO_2^{2+}$.

A CONCEPTUAL STUDY OF PYROPROCESSING FOR RECOVERING ACTINIDES FROM SPENT OXIDE FUELS

  • Yoo, Jae-Hyung;Seo, Chung-Seok;Kim, Eung-Ho;Lee, Han-Soo
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.581-592
    • /
    • 2008
  • In this study, a conceptual pyroprocess flowsheet has been devised by combining several dry-type unit processes; its applicability as an alternative fuel cycle technology was analyzed. A key point in the evaluation of its applicability to the fuel cycle was the recovery yield of fissile materials from spent fuels as well as the proliferation resistance of the process. The recovery yields of uranium and transuranic elements (TRU) were obtained from a material balance for every unit process composing the whole pyroprocess. The material balances for several elemental groups of interest such as uranium, TRU, rare earth, gaseous fission products, and heat generating elements were calculated on the basis of the knowledge base that is available from domestic and foreign experimental results or technical information presented in open literature. The calculated result of the material balance revealed that uranium and TRU could be recovered at 98.0% and 97.0%, respectively, from a typical PWR spent fuel. Furthermore, the anticipated TRU product was found to emit a non-negligible level of $\gamma$-ray and a significantly higher level of neutrons compared to that of a typical plutonium product obtained from the PUREX process. The results indicate that the product from this conceptual pyroprocessing should be handled in a shielded cell and that this will contribute favorably to retaining proliferation resistance.

Separation and purification of elements from alkaline and carbonate nuclear waste solutions

  • Alexander V. Boyarintsev ;Sergei I. Stepanov ;Galina V. Kostikova ;Valeriy I. Zhilov;Alfiya M. Safiulina ;Aslan Yu Tsivadze
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.391-407
    • /
    • 2023
  • This article provides a survey of wet (aqueous) methods for recovery, separation, and purification of uranium from fission products in carbonate solutions during the reprocessing of spent nuclear fuel and methods for removal of radionuclides from alkaline radioactive waste. The main methods such as selective direct precipitation, ion exchange, and solvent extraction are considered. These methods were compared and evaluated for reprocessing of spent nuclear fuel in carbonate media according to novel alternative non-acidic methods and for treatment processes of alkaline radioactive waste.

Recovery of Valuable Minerals from Sea Water by Membrane Separation and Adsorption Process: A Review (막 분리와 흡착 과정을 통한 해수로부터의 주요 광물 회수: 리뷰)

  • Jeon, Sungsu;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • Ever increasing global energy demand gives rise to uncontrollable environmental pollution. Demand on fossil fuel and consequent carbon emission leads to global warming and climate change. Nuclear energy is an alternative source to generate clean energy but mining of nuclear fuel is associated with harmful chemicals. Mining of valuable minerals from sea water by membrane separation process is a cost effective along with environmental friendly process. Separation and adsorption based mining of valuable minerals from sea water are another efficient process. Recovery of actinides from rare earth elements are very challenging and expensive process. Pressure driven membrane separation process is economically more viable along with environmental process. In this review membrane separation process are based on polyether sulfone, polyamide, polyimide, polyamidoxine and hybrid membranes. In case of adsorption process, mainly amidoxime kind of adsorbent are discussed.

Determination of Iodide in spent PWR fuels (경수로 사용 후 핵연료 내 요오드 정량)

  • Choi, Ke Chon;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • A study has been done on the separation of iodide from spent pressurized water reactor (PWR) fuels and its quantitative determination using ion chromatography. Spent PWR fuels were dissolved with mixed acid of nitric and hydrochloric acids (80 : 20 molL%) which can oxidize iodide to iodate to prevent it from be vaporized. After reducing ${IO_3}^-$ ­to $I_2$ in 2.5 M $HNO_3$ with $NH_2OH{\cdot}HCl$, Iodine was selectively separated from actinides and all other fission products with carbontetrachloride and back-extracted with 0.1 M $NaHSO_3$. Recovered iodide was determined using the ion chromatograph of which the column was installed in a glove box for the analysis of radioactive materials. In practice, spent PWR fuel with 42,000~44,000 MWd/MtU was analyzed and its quantity was compared to that calculated by burnup code, ORIGEN2. The agreement was achieved with a deviation of -8.3~-0.5% from the ORIGEN 2 data, $324.5{\sim}343.6{\mu}g/g$.