• Title/Summary/Keyword: acrylic acid grafting

Search Result 63, Processing Time 0.031 seconds

Surface Modification of Polypropylene Fiber by Plasma Discharge (방전처리에 의한 Polypropylene섬유의 표면개질)

  • 허만우;이창재;강인규;한명호;김삼수;임학상
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.27-37
    • /
    • 1999
  • Polypropylene(PP) films were treated with plasma glow discharge to produce peroxy radicals on the surfaces. The peroxy radicals formed on the PP film surfaces were subsequently used for the graft polymerization of acrylic acid and acrylamide in an aqueous solution by heating, respectively. Introduction of acrylic acid and acrylamide on the PP film could be confirmed by the observation of carbonyl and primary amine absorptions based on carboxylic acid and amide, respectively. And introduction of functional group could be confirmed by weight analysis and ESCA. The water contact angle(90$^{\circ}$) of PP film was constant, irrespective of elapsed time, while plasma-treated and functional monomer-grafted PP films were slowly increased with elapsed time, showing the rearrangement of surface polar groups in air condition. The water contact angle$(90^\circ)$ of PP film was decreased by the plasma treatment$(56^\circ)$ and further decreased by the grafting of acrylic acid$(34^\circ)$ and acrylamide$(37^\circ)$, indicating increased hydrophilicity of the modified surfaces. The water contact angle of plasma-treated PP film increased a little as time elapsing. The half-life periods of surface voltage on acrylic acid-(31sec) and acrylamide-grafted PP(42sec) were significantly decreased when compared to those on PP(950sec) and plasma-treated PP film(241sec). In the experiments using acid, basic and disperse dyes, absorbance and $\Delta{E}$ values of functional monomer-grafted PP films were significantly increased than that of oxygen plasma-treated one.

  • PDF

Optimal Hydrophilization and Chondrocyte Adhesion of PLLA Films and Scaffolds by Plasma Treatment and Acrylic Acid Grafting (플라스마 처리와 아크릴산 결합에 의한 PLLA 필름 및 지지체의 최적 친수화와 연골세포 점착)

  • Yang Hee-Seok;Park Kwi-Deok;Ahn Kwang-Duk;Kim Byung-Soo;Han Dong-Keun
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.168-174
    • /
    • 2006
  • To utilize as highly functional scaffolds for tissue engineering by improving hydrophobicity and cell compatibility of the exist polymer scaffolds, the biodegradable poly(L-lactic acid) (PLLA) films and scaffolds having the optimal hydrophilicity were prepared by in situ plasma treatment and grafting of a carboxyl acid-containing monomer, acrylic acid (AA) in the chamber. From the results of surface analyses, surface-modified nonporous PLLA film and dual pore scaffold surfaces showed high hydrophilicity due to the decrease in contact angle and the increase in carboxylic groups as compared with untreated PLLA control. In particular, among various surface modification methods, Ar(argon)+AA+AA sample prepared by Ar plasma and then acrylic acid treatments displayed lower contact angle and more carboxylic groups thar Ar/AA and Ar+TP(thermal polymerization) samples, indicating that Ar+AA+AA sample was optimally treated for improving its hydrophilicity. In the cases of surface modified nonporous PLLA films and dual pore scaffolds, the adhesion and proliferation of chondrocytes increased with increasing their hydrophilicity.

Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok;Jung, Hyun-Jung;Kim, Jae-Jin;Ahn, Kwang-Duk;Han, Dong-Keun;Ju, Young-Min
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.552-558
    • /
    • 2006
  • Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

Effect of Acrylic Acid-modified Polyethylene Wax Using Sequential Reaction on Properties of Polyamide/Glass Fiber Composite (폴리아미드/유리섬유 복합재료의 물성에 대한 연속반응 아크릴산 변성 폴리에틸렌 왁스의 영향)

  • Kim, Hyochul;Kim, Hyung-Il;Han, Won-Hee;Hong, Min-Hyuk;Lee, Hyunwoo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.198-204
    • /
    • 2019
  • Polymer composites are widely used as industrial materials requiring high mechanical properties. Glass fibers and fillers, which are used as a reinforcement in composites, usually have some problems such as nonuniform dispersion and poor interfacial adhesion. In this study, an acrylic acid-modified polyethylene wax was synthesized by the sequential reaction of pyrolysis of polyethylene followed by grafting with a polar acrylic acid. The acrylic acid-modified polyethylene wax was applied to polymer composites of the polyamide matrix and glass fiber reinforcement. The effect of acrylic acid-modified polyethylene wax on physical properties of polyamide based composites was thoroughly investigated.

Transdermal Delivery of Estradiol and Norethindrone Acetate: Effect of Vehicles and Pressure Sensitive Adhesive Matrix

  • Chun, Myung-Kwan;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.173-177
    • /
    • 2005
  • Addition of 30% propylene glycol was required to maintain sink condition in the evaluation of percutaneous absorption of estradiol and norethindrone acetate. The permeability of estradiol was higher in silicone and SIS adhesives. However, estradiol was crystallized in silicone, SIS, and SBS adhesive matrix. The permeability ratio of estradiol or norethindrone acetate from acrylic pressure sensitive adhesives varied widely depending on the functional group of the acrylic adhesives. PEO grafting to acrylic adhesive seemed to change physicochemical property of acrylic adhesive and increased the permeability of estradiol and norethindrone acetate significantly. On the contrary, highly cross-linked enhancer compatible acrylic adhesive decreased the permeability of both estradiol and norethindrone acetate. $Span^{\circledR}$ 20 provided the highest enhancing effect on the permeability of both estradiol and norethindrone acetate followed by oleic acid and $Crovol^{\circledR}$ EP40. The permeability of the drugs from the developed system was comparable to that from commercial $Combitran^{\circledR}$, although significantly lower amount of estradiol and norethindrone acetate were loaded in the developed system.

Radiation-Induced Graft Copolymerization of Hydrophilic Monomer onto Nylon 6

  • Choi, Jae-Ho;Lee, Chong-Kwang;Lee, Kwang-Jin
    • Nuclear Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.161-169
    • /
    • 1974
  • Radiation grafting of acrylic acid onto nylon fabric has been studied by "simultaneous irradiation" method to render its surface more hydrophilic. Nylon fabric immersed in monomer solution was irradiated in air or under vacuum with gamma-rays from Co-60. Most parts of polyacrylic acid formed on the surface of the fabric were extracted off from the fabric with 0.1% solution of sodium hydroxide at 10$0^{\circ}C$. The chemical components of the grafted product have been determined. By comparing graft polymer with ungrafted polyamide, the rate of water absorption and antistatic behavior are improved. improved.

  • PDF

Hydrophilic Modification of Polypropylene Microfiltration Membrane by Radiation-Induced Graft Polymerization and Water Permeability (방사선 조사 그라프트중합에 의한 폴리프로필렌 정밀여과막의 친수화 및 물 투과특성)

  • Park, Jae-Hyung;Lee, Kune-Woo;Hwang, Taek-Sung;Lee, Jae-Won;Oh, Won-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.954-959
    • /
    • 1999
  • Radiation-induced grafting of 2-hydroxyethyl methacrylate(HEMA), acrylic acid(AAc) and methacrylic acid(MAAc) onto polypropylene microfiltration membrane has been studied. The effect of grafting conditions such as solvent composition(MeOH and $H_2O$) and monomer concentration on the grafting yield in investigated. The highest degree of grafting is obtained at a solvent composition of 25% $H_2O$:75% MeOH for HEMA, pure water for AAc and 50% $H_2O$:50% MeOH for MAAc. Modification of the PP membranes with hydrophilic monomers is shown to cause an increase in the water permeation flux of the membranes. It is found that HEMA is the best monomer to increase the water permeation flux and the highest water permeation flux is obtained at 99% degree of grafting. The water permeation flux of AAc-grafted PP membrane and MAAc-grafted PP membrane is very sensitive to environmental pH and $Cu^{2+}$ ion, but the water permeation flux of HEMA-grafted PP membrane scarcely depends on pH and $Cu^{2+}$ ion.

  • PDF

Plasma Surface Modification of Polystyrene Foam for Recycling 1. Hydrophilic Thin Film Deposition from Acrylamide (Polystyrene Foam의 재활용을 위한 플라즈마 표면개질 1. 아크릴아미드에 의한 친수성 박막생성)

  • Seo, Eun-Deock
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.497-500
    • /
    • 2008
  • Polystyrene foam (styrofoam) was treated with low-temperature oxygen plasma by means of immobilization and grafting techniques in order to modify its hydrophobic surface property to hydrophilic one using hydrophilic monomers of acrylic acid and acrylamide, and its surface chemical structure, morphology, and hydrophilicity were examined by ESCA, field emission scanning electron microscope (FESEM), and contactangle meter. The experimental evidences, such as the increases of O/C and N/C ratios in ESCA spectrum, thin film deposition, decrease in contact-angle, strongly suggested that the plasma treatments were useful methods for the preparation of hydrophilic surface. Contact angle diminished drastically from $84^{\circ}$ to $18{\sim}19^{\circ}$. Acrylamide, compared to acrylic acid, appeared to play a decisive role, and to be more powerful agent for improving its surface hydrophilicity.

Radiation-Induced Graft Copolymerization of Hydrophilic Monomers to Polyester

  • Lee, Chong-Kwang;Park, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.90-101
    • /
    • 1972
  • Radiation grafting of acrylic acid to Polyester fabric has been studied by an impregnation method to render its surface more hydrophilic. Impregnated fabric was irradiated under nitrogen with gamma-ray from Co-60. The homopolymer formed usually could be extracted with water at 10$0^{\circ}C$. Graft-fabric exhibited a good acceptability to acid, basic or disperse dyes in conventional aqueous dye bath at moderate temperature.

  • PDF

Ammonium Adsorption Property of Acrylic Acid and Styren Grafting Polypropylene Non-Woven Fabric Synthesized by Photo-induced Polymerization (광조사 중합법에 의해 합성된 PP-g-AA와 PP-g-St 부직포의 암모니아성 질소 흡착특성 비교)

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1255-1263
    • /
    • 2008
  • The efficiency of PP-g-AA and PP-g-St nonwoven fabric synthesized by photoinduced polymerization as an adsorbent for removal $NH_3-N$ from waste water was evaluated. The results evidently indicate that the adsorption capacities of $NH_3-N$ onto PP-g-AA nonwoven fabric were extremely superior to those onto sulfonated PP-g-St nonwoven fabric, PK and zeolite. PP-g-AA nonwoven fabric showed the maximum adsorption capacity of $NH_3-N$ at the degree of grafting of 80 wt.%. The adsorption behaviour of $NH_3-N$ onto PP-g-AA and sulfonated PP-g-St nonwoven fabric was controlled by an ion exchange reaction, and tended to be similar to both trends of Langmiur and Freundlish isotherm. Futhermore, PP-g-AA non-woven fabric could be regenerated more than 5 times by a simple washing with 0.1N HCl with no decrease of adsorption capacity and no degradation of physical properties. Also sulfonated PP-g-St nonwoven fabric could be regenerated by washing with 0.1N ${H_2}{O_4}$. However, their regeneration efficiency was significantly low because grafting layer acted as functional radical for adsorption was continuously desquamated in the adsorption or regeneration processes, which resulted in decrease of adsorption capacity and weight of adsorbent. All results obtained from this study indicate that the $NH_3-N$ removal capacity of PP-g-AA non-woven fabric was extremely superior to those of PP-g-St non-woven fabric, PK and zeolite.