Plasma Surface Modification of Polystyrene Foam for Recycling 1. Hydrophilic Thin Film Deposition from Acrylamide

Polystyrene Foam의 재활용을 위한 플라즈마 표면개질 1. 아크릴아미드에 의한 친수성 박막생성

  • Seo, Eun-Deock (Department of Chemical Engineering, Fire and Disaster Prevention Engineering, Kyungnam University)
  • 서은덕 (경남대학교 에너지화학공학과, 소방방재공학과)
  • Published : 2008.09.30

Abstract

Polystyrene foam (styrofoam) was treated with low-temperature oxygen plasma by means of immobilization and grafting techniques in order to modify its hydrophobic surface property to hydrophilic one using hydrophilic monomers of acrylic acid and acrylamide, and its surface chemical structure, morphology, and hydrophilicity were examined by ESCA, field emission scanning electron microscope (FESEM), and contactangle meter. The experimental evidences, such as the increases of O/C and N/C ratios in ESCA spectrum, thin film deposition, decrease in contact-angle, strongly suggested that the plasma treatments were useful methods for the preparation of hydrophilic surface. Contact angle diminished drastically from $84^{\circ}$ to $18{\sim}19^{\circ}$. Acrylamide, compared to acrylic acid, appeared to play a decisive role, and to be more powerful agent for improving its surface hydrophilicity.

폴리스틸렌발포체(스티로폼)를 비롯한 소수성 폴리머의 재활용과 친수성 표면개질의 한 방편으로 산소플라즈마 고정화와 그래프팅법을 이용하여 친수성인 아크릴산과 아크릴아미드단량체를 스티로폼 표면에 도입하였다. 플라즈마 처리에 의한 표면개질의 증거는 ESCA스펙트럼의 O/C와 N/C ratio의 증가, 전계방사현미경의 사진으로부터 박막생성 및 접촉각의 현저한 감소 현상의 관찰로부터 확인하였다. 접촉각은 $84^{\circ}$에서 $18{\sim}19^{\circ}$로 대폭 감소하였으며, 이는 아크릴산보다 아크릴아미드가 결정적 요인이 됨을 알 수 있었다.

Keywords

References

  1. B. Y. Shin, K. S. Kang, G. S. Jo, D. H. Han, J. S. Song, S. I. Lee, T. J. Lee, and B. S. Lee, Polymer(Korea), 31, 269 (2007)
  2. Y. K. Ko, J. S. Jeong, S. H. Kim, J. Y. Lim, J. M. Rhee, H. B. Lee, and G. Khang, Polymer(Korea), 32, 109 (2008) https://doi.org/10.1016/0032-3861(91)90570-9
  3. D. H. Sim and S. D. Seol, Polymer(Korea), 32, 276 (2008)
  4. E. D. Seo, Y. R. Kang, and H. S. Lim, J. Korean. Soc. Dyer & Finishers, 3, 22 (1991)
  5. E. D. Seo, Y. R. Kang, and J. D. Kim, J. Korean. Soc. Dyer & Finishers, 7, 55 (1995)
  6. E. D. Seo, J. Korean. Soc. Dyer & Finishers, 19, 42 (2007)
  7. H. Z. Wang, M. W. Rembold, and J. Q. Wang, J. Appl. Polym. Sci., 49, 701 (1993) https://doi.org/10.1002/app.1993.070490415
  8. J. Shao, C. M. Carr, C. P. Rowlands, and J. Walton, J. Text. Inst., 90, 459 (1999) https://doi.org/10.1080/00405000.1999.10750045
  9. J. S. Bae and I. H. Kim, J. Korean. Soc. Dyer & Finishers, 13, 256 (2001)
  10. Y. S. Jeon, S. W. Nam, and I. H. Kim, J. Korean. Soc. Dyer & Finishers, 16, 10 (2004)
  11. H. S. Lee, Y. K. Jeong, and J. Jang, J. Korean. Soc. Dyer & Finishers, 18, 281 (2006)
  12. H .Yasuda, Plasma Polymerization, Academic Press, Orlando, Florida, 1985
  13. F. Clouet and M. K. Shi, J. Appl. Polym. Sci., 46, 1955 (1992) https://doi.org/10.1002/app.1992.070461108
  14. R. M. France and R. D. Short, J. Chem. Soc., Faraday Trans., 93, 3173 (1997) https://doi.org/10.1039/a702311a
  15. E. D. Seo and H. Yasuda, Polymer(Korea), 14, 378 (1990)
  16. E. D. Seo, Y. R. Kang, and H. S. Lym, Polymer(Korea), 15, 570 (1991)
  17. E. D. Seo, Macromol. Res., 11, 387 (2003) https://doi.org/10.1007/BF03218381
  18. W. Klopffer, Introduction to Polymer Spectroscopy, Springer-Verlag, Berlin Heidelberg New York Tokyo, p.13 (1984)
  19. D. M. Cho, C. K. Park, K. Cho, and C. E. Park, Polymer, 38, 6243 (1997) https://doi.org/10.1016/S0032-3861(97)00175-4
  20. M. E. Schrader and G. I. Loeb, Modern Approaches to Wettability, Plenum, New York, p.144 (1992)
  21. M. J. Kim and E. D. Seo, Polymer(Korea), 26, 279 (2002)