• Title/Summary/Keyword: acoustic sensor

Search Result 728, Processing Time 0.026 seconds

Development of Piezoelectric Transformer Using The Single Crystal of LiTaO3 (LiTaO3 단결정을 사용한 압전변압기의 개발)

  • Hwang, Sung-Phil;Kim, Moo-Joon;Ha, Kang-Lyeol;Kang, Gab-Joong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.132-137
    • /
    • 2002
  • The single crystal of $LiTaO_3$ ($x-112^{\circ}$ y) has very stable thermal characteristics in a piezoelectric transformer. In this paper, a piezoelectric transformer made of the crystal is newly designed and its operating characteristics are analyzed. The length of the transformer is determined as twice as its width for Lame'-mode because the single crystal of $LiTaO_3$ has low electro-acoustic efficiency. The electric and vibrational characteristics of the transformer is simulated by the PSpice program, and its results are compared to experimental ones. As the results, the ratio of output voltage to input shows large than 10 at 290.83[kHz], which is the frequency coupled the 2nd harmonic for length and the fundamental for width of the Lame'-mode transformer.

Diagnosis of Insulation Deterioration in Cast Resin Transformer Using Method of AE Measurement (음향 방출 측정법을 이용한 몰드변압기 열화진단)

  • Lee, Sang-Woo;Gu, Kyung-Chul;Kim, Seung-Gyu;Kim, In-Sik;Lee, Dong-In;Kim, Ki-Chai;Park, Won-Zoo;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1936-1938
    • /
    • 2000
  • In this paper, a frequency spectra of AE (acoustic emission) signals detected from the partial discharges of an epoxy resin void and a cast resin transformer in operating were analyzed to offer the proper frequency range of AE signals from the corona discharge for the purpose of AE sensor selection, From these results, a frequency spectra of AE signals emitted from the corona discharges in the void of an epoxy resin sample were about 190[kHz] to 220[kHz] by the FFT(fast fourier transform), A frequency spectra of AE signals emitted from a cast. resin transformer with non-load were appeared to be downward of about 140[kHz] by the FFT, and then a frequency spectra of AE signals emitted from the above of cast resin transformer with load were appeared to increase from about 190[kHz] to 220[kHz] by the FFT.

  • PDF

Array gain estimated by spatial coherence in noise fields (소음 환경에서 공간상관성을 이용한 배열이득 추정)

  • Park, Ji Sung;Choi, Yong Wha;Kim, Jea Soo;Cho, Sungho;Park, Jung Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.427-435
    • /
    • 2016
  • Array Gain (AG) is a metric to measure the performance of an array of acoustic sensors. AG is affected by the configuration of array, frequency and array element spacing, and the directivity of the ambient noise. In this paper, an algorithm to calculate AG based on the spatial coherence is used, and the results are verified through sea-going experiment. The method using the spatial coherence can be used to consider the arbitrary shape of an array and directionality of ambient noise. In the sea-going experiment, the towed source was used to transmit the Continuous Wave (CW), and was received at the horizontal line array on the seabed. The ambient noise was measured between the source transmission. The experimental AG was calculated from the SNR (Signal to Noise Ratio) of single sensor and an array of sensors. Finally, the predicted AG is shown to agree with the experimental value of AG.

The Design of IoT Device System for Disaster Prevention using Sound Source Detection and Location Estimation Algorithm (음원탐지 및 위치 추정 알고리즘을 이용한 방재용 IoT 디바이스 시스템 설계)

  • Ghil, Min-Sik;Kwak, Dong-Kurl
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.53-59
    • /
    • 2020
  • This paper relates to an IoT device system that detects sound source and estimates the sound source location. More specifically, it is a system using a sound source direction detection device that can accurately detect the direction of a sound source by analyzing the difference of arrival time of a sound source signal collected from microphone sensors, and track the generation direction of a sound source using an IoT sensor. As a result of a performance test by generating a sound source, it was confirmed that it operates very accurately within 140dB of the acoustic detection area, within 1 second of response time, and within 1° of directional angle resolution. In the future, based on this design plan, we plan to commercialize it by improving the reliability by reflecting the artificial intelligence algorithm through big data analysis.

An Implementation of a GPIAS Measurement System for Animal Tinnitus Detection and Study on Effect of Starting Point of Stimulus Background Sound on Startle Response (동물 이명 검사용 GPIAS 측정 장치 구현과 이를 통한 자극 배경음의 시작 시점이 놀람 반응에 주는 영향)

  • Jeon, Poram;Jung, Jae Yun;Lee, Seung-Ha;Park, Ilyong
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.410-414
    • /
    • 2013
  • As one of the effective methods for researching the objective tinnitus detection, the GPIAS (Gap Pre-pulse Inhibition of Acoustic Startle) measurement has been used to verify the existence of animal tinnitus objectively. The level and pattern of the background sound presented prior to a startle pulse are closely related with the GPIAS results. But the effect of the starting point of the background sound on animal startle responses has not been reported yet. In this paper, we present the implementation of a GPIAS measurement system based on an unconstrained enclosure to avoid animals' excessive constraint stress and deal with the animals' growth. After the performance of our implemented system has been tested through the animal experiment using 4 SD-rats, the effect of starting point of stimulus background sound on the startle response has been studied by the use of our implemented system. Through the results, it is verified that our system can measure the inhibition of animal startle responses due the gap pre-pulse for GPIAS calculation and the background sound starting point does not significantly effect on the startle response and the GPIAS values if the background sound continues for more than 300msec before a gap pre-pulse is presented.

The Phase Estimation Algorithm of Arrival Time Difference in MIMO Underwater Sensor Communication (MIMO 수중 통신에서 도착시간 차이에 따른 보상 알고리즘)

  • Baek, Chang-uk;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1531-1538
    • /
    • 2015
  • In this paper, we proposed receiver structure based on an iterative turbo equalization to cope with phase difference between two sensors in MIMO underwater communication channel. In a space-time coded system, it is often assumed that there are no phase errors among the multiple transmitter and receiver chains. In this paper, we have studied the effect of the phase errors between different transmit sensors and different propagation paths in the environment of MIMO underwater communication system, and have shown through BER performance by computer simulations that the bit-error-rate performance can be severely degraded. A decision-directed estimation and compensation algorithm has been proposed to minimize their effects on the system performance. In this paper, we investigate the phase differences and their effects on multiple-input and multiple-output systems, and propose a compensation algorithm for underwater channel model to minimize their effects.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Discrimination of the Heated Coconut Oil using the Electronic Nose (전자코를 사용한 가열처리 야자유의 판별)

  • Han, Kee-Young;Oh, Se-Yeon;Kim, Jung-Hoan;Youn, Aye-Ree;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • Effect of heat (160, 190, and $220^{\circ}C$ for 24 hr) on coconut oil was examined by principal component analysis using electronic nose consisting of six metal oxide sensors. Increase in heating temperature decreased ratio of resistance and first principal component score (from +0.952 to -0.325), indicating rancidity of coconut oil increased at high heating temperature. Result of electronic nose based on GC with surface acoustic wave sensor showed significant changes in volatile profiles of coconut oil. High resolution olfactory imaging $(VaporPrint^{TM})$ was particularly useful for evaluating oil quality. Peak numbers and areas increased with increasing heating time and temperature (160, $220^{\circ}C$). Electronic nose analysis can provide simple, fast, and straightforward results and is best suited for quality control and process monitoring in flavor field of food industry.

A Study on The Range Estimation of Underwater Acoustic Source using FDOA and TDOA of Multipath Signals (다중경로 신호의 도달 주파수와 시간 차를 이용한 수중음원 거리 추정 연구)

  • Son, Yoon-Jun;Son, Gi-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.311-318
    • /
    • 2021
  • Underwater, signals are transmitted by sound waves. Sound waves are transmitted through a multipath, either directly or through reflection, due to the variety of underwater environmental characteristics. In such diverse and complex underwater environments, tests must be conducted to determine the extent of the hazard from the survivability and pitfalls of submarines by measuring the underwater radiated noise. Usually, the sound source level measurement of underwater radiated noise should be made within the closest point (CPA: Closest Point of Approach) ± a few meters between the measurement sensor and the submarine. In this study, FDOA and TDOA methods were proposed to estimate the underwater source range. A simulation based on the underwater channel model confirmed the performance of the proposed method.

An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves

  • Xu, Ren-yi;Wang, Hang;Peng, Min-jun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2107-2119
    • /
    • 2022
  • Accurate remaining useful life (RUL) prediction for critical components of nuclear power equipment is an important way to realize aging management of nuclear power equipment. The electric gate valve is one of the most safety-critical and widely distributed mechanical equipment in nuclear power installations. However, the electric gate valve's extended service in nuclear installations causes aging and degradation induced by crack propagation and leakages. Hence, it is necessary to develop a robust RUL prediction method to evaluate its operating state. Although the particle filter(PF) algorithm and its variants can deal with this nonlinear problem effectively, they suffer from severe particle degeneracy and depletion, which leads to its sub-optimal performance. In this study, we combined the whale algorithm with regularized particle filtering(RPF) to rationalize the particle distribution before resampling, so as to solve the problem of particle degradation, and for valve RUL prediction. The valve's crack propagation is studied using the RPF approach, which takes the Paris Law as a condition function. The crack growth is observed and updated using the root-mean-square (RMS) signal collected from the acoustic emission sensor. At the same time, the proposed method is compared with other optimization algorithms, such as particle swarm optimization algorithm, and verified by the realistic valve aging experimental data. The conclusion shows that the proposed method can effectively predict and analyze the typical valve degradation patterns.