• Title/Summary/Keyword: acoustic performance

Search Result 1,486, Processing Time 0.027 seconds

Acoustic test of the payload fairing of Korea satellite launch vehicle (소형 위성 발사체의 페이로드 페어링부에 대한 음향 가진 시험)

  • Park, S.H.;Seo, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.220-223
    • /
    • 2007
  • Acoustic test of the payload fairing of Korea satellite launch vehicle was conducted to verify the performance of acoustic protection system installed inside the payload fairing. This paper briefly introduces the acoustic test procedures and its results. Overall 148 dB acoustic loads were exerted on the payload fairing structures which mated with the upper stage structure of the launch vehicle. In order to verify the increase of insertion loss by the acoustic protection system, two kinds of test were performed. One is conducted with acoustic protection system and the other without acoustic protection system. Internal acoustic loads as well as external ones were measured and the measured insertion losses were compared with the requirement. The results showed that the acoustic protection system increases the insertion loss by more than 6 dB above 125 Hz. They also indicated that some design modification of Helmholtz resonator array is required to increase the insertion loss at a cavity resonant frequency.

  • PDF

Underwater Acoustic Source Localization based on the Probabilistic Estimation of Direction Angle (확률적 방향각 추정에 기반한 수중 음원의 위치 인식 기법)

  • Choi, Jinwoo;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.206-215
    • /
    • 2014
  • Acoustic signal is crucial for the autonomous navigation of underwater vehicles. For this purpose, this paper presents a method of acoustic source localization. The proposed method is based on the probabilistic estimation of time delay of acoustic signals received by two hydrophones. Using Bayesian update process, the proposed method can provide reliable estimation of direction angle of the acoustic source. The acquired direction information is used to estimate the location of the acoustic source. By accumulating direction information from various vehicle locations, the acoustic source localization is achieved using extended Kalman filter. The proposed method can provide a reliable estimation of the direction and location of the acoustic source, even under for a noisy acoustic signal. Experimental results demonstrate the performance of the proposed acoustic source localization method in a real sea environment.

Longitudinal music perception performance of postlingual deaf adults with cochlear implants using acoustic and/or electrical stimulation

  • Chang, Son A;Shin, Sujin;Kim, Sungkeong;Lee, Yeabitna;Lee, Eun Young;Kim, Hanee;Shin, You-Ree;Chun, Young-Myoung
    • Phonetics and Speech Sciences
    • /
    • v.13 no.2
    • /
    • pp.103-109
    • /
    • 2021
  • In this study, we investigated longitudinal music perception of adult cochlear implant (CI) users and how acoustic stimulation with CI affects their music performance. A total of 163 participants' data were analyzed retrospectively. 96 participants were using acoustic stimulation with CI and 67 participants were using electrical stimulation only via CI. The music performance (melody identification, appreciation, and satisfaction) data were collected pre-implantation, 1-year, and 2-year post-implantation. Mixed repeated measures of ANOVA and pairwise analysis adjusted by Tukey were used for the statistics. As result, in both groups, there were significant improvements in melody identification, music appreciation, and music satisfaction at 1-year, and 2-year post-implantation than a pre-implantation, but there was no significant difference between 1 and 2 years in any of the variables. Also, the group of acoustic stimulation with CI showed better perception skill of melody identification than the CI-only group. However, no differences found in music appreciation and satisfaction between the two groups, and possible explanations were discussed. In conclusion, acoustic and/or electrical hearing devices benefit the recipients in music performance over time. Although acoustic stimulation accompanied with electrical stimulation could benefit the recipients in terms of listening skills, those benefits may not extend to the subjective acceptance of music. These results suggest the need for improved sound processing mechanisms and music rehabilitation.

A study on the performance test and acoustic design of interference type noise reduction device for railway noise (철도소음 저감을 위한 간섭형 방음장치 음향 설계 및 성능시험에 관한 연구)

  • Cho, Jun-Ho;Koh, Hyo-In
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.787-795
    • /
    • 2011
  • Noise barrier is generally used with welding of joint rail for railway noise reduction in our country. But the noise barrier for high speed railway has weak point in low frequencies about 315Hz band. In this study, For developing of Interference-type Noise Reduction Device(INRD), acoustic analysis were performed using commercial software. For verifying the improvement in the noise reduction, noise measurement before and after installing of INRD were performed in Anechoic Chamber. From these acoustic analysis and noise measurement, it was known that developed INRD has a good noise reduction performance and can be used efficiently with conventional noise barrier.

Development of Underwater Acoustic Performance Measurement System Using Pulse Tubes (펄스 튜브를 이용한 수중 음향 성능 측정 시스템 개발)

  • Seo, Yun-Ho;Kim, SangRyul;Lee, Sung-Min;Byun, Yang-Heon;Seo, Youngsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.603-608
    • /
    • 2014
  • Underwater acoustic materials are installed in order to reduce reflection, transmission and radiation of an underwater structure. The acoustic performance of the materials should be evaluated in accurately-controlled environment in terms of temperature and static pressure. In this paper, three pulse tubes, which is equipped with temperature and pressure controllers, are designed and developed to evaluate echo reduction and transmission loss for evaluating the performance below 10 kHz and 30kHz, respectively. The new procedures of the evaluation are suggested to improve the accuracy and the validation for the developed pulse tubes is carried out by comparing theoretical values to experimental ones.

  • PDF

Learning-based Improvement of CFAR Algorithm for Increasing Node-level Event Detection Performance in Acoustic Sensor Networks (음향 센서 네트워크에서의 노드 레벨 이벤트 탐지 성능향상을 위한 학습 기반 CFAR 알고리즘 개선)

  • Kim, Youngsoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.243-249
    • /
    • 2020
  • Event detection in wireless sensor networks is a key requirement in many applications. Acoustic sensors are one of the most frequently used sensors for event detection in sensor networks, but they are sensitive and difficult to handle because they vary greatly depending on the environment and target characteristics of the sensor field. In this paper, we propose a learning-based improvement of CFAR algorithm for increasing node-level event detection performance in acoustic sensor networks, and verify the effectiveness of the designed algorithm by comparing and evaluating the event detection performance with other algorithms. Our experimental results demonstrate the superiority of the proposed algorithm by increasing the detection accuracy by more than 45.16% by significantly reducing false positives by 7.97 times while slightly increasing the false negative compared to the existing algorithm.

A Study on Enhancement of Thermoelectric Cooling System Performance by Piezoelectric Actuator (압전 액츄에이터를 이용한 열전냉각 시스템 성능 향상에 관한 연구)

  • Yang, Ho-Dong;Yoon, Hee-Sung;Oh, Yool-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.13-19
    • /
    • 2009
  • The thermoelectric cooling system consisted of the thermoelectric module, a heat sink and a cooling fan, respectively. Also, the piezoelectric actuator was applied to improve the performance of thermoelectric cooling system and investigate the heat transfer phenomenon. The temperature distribution of test section was measured to investigate cooling characteristics of thermoelectric cooling system. The flow phenomenon of test section was visualized using visualization device. When the piezoelectric actuator was applied to the heat transfer process of thermoelectric cooling system, acoustic streaming was occurred in test section. The acoustic streaming was occurred forced convection flow, and was regularly formed the temperature distribution in test section. The results clearly show that the acoustic streaming is one of the prime effects to enhance the convection heat transfer and can enhance the performance of thermoelectric cooling system.

Vector Channel Simulator Design for Underwater Acoustic-based Communications

  • Kim, Duk-Yung;Kim, Yong-Deak;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.18-24
    • /
    • 2002
  • This paper discusses the development of an acoustic vector channel simulator for the performance analysis of an acoustic digital communication system. The channel simulator consists of transmission module, acoustic channel model, receiver, beamformer, and adaptive equalizer. The source signal (QPSK) is generated by the specified parameters. The transmitted signal generates multipath signals which have a different delay, amplitude and doppler frequency. The paper presents in details the approach to the performance analysis of an acoustic digital communication system according to the antenna structure and the various baseband signal processing techniques.

Nonlinear ANC using a NPVSS-NLMS algorithm and online modelling of an acoustic linear feedback path (NPVSS-NLMS 알.고리즘과 온라인 선형 피드백 경로 모델링을 이용한 비선형 능동 소음 제어)

  • Seo, Jae-Beom;Nam, Sang-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.1001-1004
    • /
    • 2010
  • Acoustic feedback and background noise variation can degrade the performance of an active noise control (ANC) system. In this paper, nonlinear ANC using a non-parametric VSS-NLMS (or NPVSS-NLMS) algorithm and online feedback path modeling is proposed, whereby the conventional linear ANC with online acoustic feedback-path modeling is further extended to nonlinear Volterra ANC with a linear acoustic feedback path. In particular, the step-size of the NPVSS-NLMS algorithm is controlled to reduce the effect of background noise variation in the ANC system. Simulation results demonstrate that the proposed approach yields better nonlinear ANC performance compared with the conventional nonlinear ANC method.

The study of absorbing material performance for the noise mitigation of slab track (슬래브궤도의 소음저감을 위한 흡음재의 성능에 관한 연구)

  • Kim, Jin-Ho;Lee, Kwang-Do;An, Gang-Yell;Jun, Woo-Sang
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1044-1049
    • /
    • 2007
  • The construction of concrete slab track system is increased because the system has advantages which are maintenance free and so on, the other side, the system has weak points such as increase of the cost of the early stage construction and noise levels. The increment of noise is due to the reflection of generated noise on the slab tracks. Therefore the acoustic-absorptive materials are considered to reduce noise level. It has been made clear that acoustic-absorptive materials are effective for reducing the wheel/rail noise on slab tracks. The important performance of the acoustic-absorptive material is absorption rates and absorption rates are verified for the considered absorber elements using acoustic duct method. In addition, the required provisons for installing acoustic-absorptive block on slab tracks are considered.

  • PDF