• 제목/요약/키워드: acoustic method

검색결과 2,810건 처리시간 0.025초

New Acoustic Imaging Method Development for Localization of an Underground Acoustic Source Using a Passive SONAR System

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권2E호
    • /
    • pp.10-17
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about 100m underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

넙스(NURBS) 곡선 모델링을 이용한 발사체 음향하중 예측에 대한 연구 (A Study on Prediction of Acoustic Loads of Launch Vehicle Using NURBS Curve Modeling)

  • 박서룡;김홍일;이수갑
    • 한국항공우주학회지
    • /
    • 제46권2호
    • /
    • pp.106-113
    • /
    • 2018
  • 발사체 발사 시 제트화염에 의해 발생하는 강력한 음향파는 음향하중의 형태로 비행체를 가진한다. 대표적인 경험적 음향하중 예측기법인 DSM-II(Distributed Source Method-II)는 제트화염 축을 따라 소음원을 배치하는 방법으로 계산비용 및 정확성 측면에서 장점을 갖는다. 하지만 소음원 배치 방법의 한계로 인해 다양한 발사대 환경을 정확하게 반영하기에는 한계가 있다. 본 연구에서는 넙스(Non-Uniform Rational B-Spline, NURBS) 곡선 모델링을 경험적 예측기법에 도입하여 자유롭게 소음원을 배치할 수 있는 음향하중 예측기법에 대한 연구를 수행하였다. 넙스 기법이 새롭게 도입된 해석기법의 검증을 위하여 Epsilon 로켓의 곡선형 저소음 발사대 형상에 대한 음향하중 예측을 수행하였고 해석 결과를 기존의 예측방법 및 실험 결과와 비교하였다.

하이브리드 방법을 이용한 비행 중 비행체 음향하중 예측에 관한 연구 (A study on the acoustic loads prediction of flight vehicle using computational fluid dynamics-empirical hybrid method)

  • 박서룡;김만식;김홍일;이수갑
    • 한국음향학회지
    • /
    • 제37권4호
    • /
    • pp.163-173
    • /
    • 2018
  • 본 논문에서는 비행 중 비행체 표면에 작용하는 음향하중 예측을 수행하였다. 비행 중 음향하중은 비행체 표면의 압력 변동에 의해 발생한다. 기존의 비행 중 음향하중 예측방법은 반경험적 방법으로 이론과 실험 결과를 기반으로 도출한 경험식을 활용한다. 하지만 경험식의 입력 값으로 사용되는 비행체 주변 유동특성 및 경계층 파라미터를 매번 실험을 통해 얻는 것에는 한계가 있다. 따라서 본 논문에서는 전산유체해석(Computational Fluid Dynamics, CFD) 결과를 반경험적 방법과 혼합하는 하이브리드 방법을 이용하여 비행 중 비행체에 작용하는 음향하중을 예측하였다. Cone-cylinder-flare 형상 비행체에 대해 아음속, 천음속, 초음속, 최대동압도달(Maximum dynamic pressure, Max-q) 시점의 비행 환경에 대한 음향하중 예측을 수행하였다. 하이브리드 방법 적용 시 전산유체해석결과를 기반으로 한 경계층 끝단 영역 판단 방법에 대해 비교하였고 여러 연구자에 의해 제시된 경험식에 따른 음향하중 예측결과를 비교하였다.

자유 음장에서 빔형성 방법을 이용한 음향 임피던스 측정 (Measurement of the acoustic impedance by using beamforming method in a free-field)

  • 선종천;신창우;백순권;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.969-974
    • /
    • 2007
  • In this paper, a beamforming technique is introduced to measure the acoustic impedance at both normal and oblique incidence in a free field. The acoustic impedance is obtained by separating incident and reflected signals using the adaptive nulling method which is one of the various beamforming algorithms. To obtain better results, pressure vector commonly used in array signal processing is replaced with the transfer function vector between each microphone and the white Gaussian noise is suppressed by a wavelet shrinkage technique. The experiments conducted in a semi-anechoic room show that the proposed method is efficient and accurate in measuring the acoustic impedance of sound absorbing materials under a free field condition.

  • PDF

음향해석과 다구치법에 의한 스피커 설계 (Designing a Loudspeaker by Acoutsic Analysis and Taguchi Method)

  • 김준태;김정호;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.568-574
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on a numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculate the vibration response of the cone excited by the voice coil. The vibration response of the speaker cone has been used as a boundary condition for the acoustic analysis, and the acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical model has been confirmed by comparing the numerical results with experimental ones obtained in an anechoic chamber. Some design parameters contributing dominantly to the acoustic characteristics have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

복소음향인텐시티법을 이용한 디젤엔진의 소음원 규명 (Indentification of Noise Source of a Diesel Engine using Complex Acoustic Intensity Method)

  • 오재응;김상헌;한광희
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.182-195
    • /
    • 1998
  • The relation between the vibration induced from machinery and the radiated sound is complicated. Acoustic intensity method is widely used to obtain the accuracy of noise identification. In this study, as groundwork, the complex acoustic intensity method is performed to identify noise source and transmission path on different free space point source fields. From the numerical analysis for these simple fields, it is possible to predict the sound field characteristics which noise sources are related with each other, and certificate the validity of complex acoustic intensity. As an industrial application, the complex acoustic intensity method is applied a diesel engine to identify sound radiation characteristics in the near field.

  • PDF

구조-음향계의 정상상태 응답예측을 위한 유한요소법과 경계요소법의 응용 (Applicatio of Finite Element and Boundary Element Methods to Predict Steady-State Response of a Structure-Acoustic-Cavity System)

  • 이장명
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1383-1391
    • /
    • 1996
  • The steady-state response for a coupled structure-acoustic-cavity systme has been investigated by numerical technique using a directly coupled finite element method(FEM) and Boundary Element Method(BEM) model. The Laplace tranformed matrix equations for the structure and the acoustic cavity are coupled directly satisfying the necessary equilibrium and compatibility conditions. The coupled FEM-BEM code is verified by comparing its prediction for an example with known analytical, numerical and experimental results. The example involves a coupled structure-acoustic-cavity system which is a box-type cavity with one end as experimentally excited pinned-pinned plate.

공력소음해석과 최적화 기법을 통한 비등간격 팬 개발 (DEVELOPMENT OF UNEVEN FAN BY AERO-ACOUSTICS ANALYSIS & OPTIMIZATION METHOD)

  • 김종수;김형식;현기탁
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.16-22
    • /
    • 2012
  • Acoustic pressure field around the centrifugal fan is predicted by a aero-acoustic splitting method. Unsteady flow field is obtained by solving the incompressible Navier-Stokes equations using commercial code, while the acoustic waves generated inside the centrifugal fan and shroud are predicted by solving the far field acoustics analysis. Computational results show that the acoustic waves of BPF tone are generated by interactions of the blades with the shroud. Acoustic results is validated by experimental results This paper describes the influence of geometric parameters on the noise generation from the section of blades and shroud. One of the effective ways to reduce BPF noise is optimization method using Genetic Algorithm, which effectively minimize eccentricity, is suggested. New improving design was developed by optimization method.

유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구 (A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method)

  • 정석주
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF

음향강도계측법에 의한 음향투과손실의 측정 및 표면진동 모우드의 예측에 관한 연구 (A study of transmission loss and surface vibration mode by the two microphone acoustic intensity method)

  • 김의간;남청도;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.63-71
    • /
    • 1987
  • The measuring of acoustic intensity has been investigated by many researchers and practicians during the last several decades. But due to the lack of measurement accuracy, they have had no practical use. In recent years, the two microphone acoustic intensity method has been developed by the advancement of FFT analysis technique and the digital data processing equipment. This new method of using two microphones gives informations on the noise source survey and the acoustic power of sound radiation source without the anechoic room. In this paper, theoretical formulae for the two microphone acoustic intensity method and the sound transmission loss are checked. The obtained results for the acoustical enclosure of gas heat pump were compared with the classical field incidence mass law. The surface vibration modes for a panel of enclosure were also estimated.

  • PDF