• Title/Summary/Keyword: acoustic emission technology

Search Result 320, Processing Time 0.03 seconds

Shear Behavior of $Carbon/BMI({\pm}45^{\circ})_{2s}$By Acoustic Emission (음향방출을 통한 $Carbon/BMI({\pm}45^{\circ})_{2s}$의 전단 거동)

  • Lee, Taek-Su;Lee, Jong-Mun;Lee, Jae-Rak
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.888-894
    • /
    • 1994
  • In detail of fracture and mechanical properties to carbon/BMI$(\pm 45^\circ)_{2s}$ discusses by acoustic emission and tensile testing. The bismaleimide resin from Boots Technochemie Co. was toughened by TM 120 from same Co. The weight proportions of TM 120 were fixed as 0, 5, 10, 15, 20, 25phr. The 0.2phr of 1, 4-diazobicyclo-(2, 2, 2)-octane(DABC0) was used as the accelerator. The used carbon fiber was T300 from Toray Co. The optimum additional proportion of TM120 was proved as 20phr by mechanical testing and at the same time by the results of acoustic emission. toughening agent gives significant influences on the fracture phenomena and mechanical strength.

  • PDF

Frequency characteristic analysis on acoustic emission of mortar using cement-based piezoelectric sensors

  • Lu, Youyuan;Li, Zongjin
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.321-341
    • /
    • 2011
  • Acoustic emission (AE) monitoring was conducted for mortar specimens under three types of static loading patterns (cubic-splitting, direct-shear and pull-out). Each of the applied loading patterns was expected to produce a particular fracture process. Subsequently, the AEs generated by various fracture or damage processes carried specific information on temporal micro-crack behaviors of concrete for post analysis, which was represented in the form of detected AE signal characteristics. Among various available characteristics of acquired AE signals, frequency content was of great interest. In this study, cement-based piezoelectric sensor (as AE transducer) and home-programmed DEcLIN monitoring system were utilized for AE monitoring on mortar. The cement-based piezoelectric sensor demonstrated enhanced sensitivity and broad frequency domain response range after being embedded into mortar specimens. This broad band characteristic of cement-based piezoelectric sensor in frequency domain response benefited the analysis of frequency content of AE. Various evaluation methods were introduced and employed to clarify the variation characteristics of AE frequency content in each test. It was found that the variation behaviors of AE frequency content exhibited a close relationship with the applied loading processes during the tests.

Microfailure Mechanisms of Single-Fiber Composites Using Tensile/Compressive Fragmentation Techniques and Acoustic Emission (인장/압축 Fragmentation시험법과 음향방출을 이용한 단 섬유 복합재료의 미세파괴 메커니즘)

  • 김진원;박종만;윤동진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.159-162
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Amino-silane and maleic anhydride polymeric coupling agents were used via the dipping and electrodeposition (ED), respectively. Both coupling agents exhibited higher improvements in interfacial shear strength (IFSS) under tensile tests than compressive cases. However, ED treatment showed higher IFSS improvement than dipping case under both tensile and compressive test. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed during compressive test. For both the untreated and treated cases AE distributions were separated well under tensile testing. On the other hand, AE distributions were rather closer under compressive tests because of the difference in failure energies between tensile and compressive loading. Under both loading conditions, fiber breaks occurred around just before and after yielding point. Maximum AE voltage fur the waveform of carbon or basalt fiber breakage under tensile tests exhibited much larger than those under compressive tests.

  • PDF

Interfacial Properties of Electrodeposited Carbon Fibers Reinforced Epoxy Composites Using Fragmentation Technique and Acoustic Emission

  • Yeong-Min Kim;Joung-Man Park;Ki-Won Kim;Dong-Jin Yoon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.28-31
    • /
    • 1999
  • Carbon fiber/epoxy composites using electrodeposited monomeric and polymeric coupling agents were compared with the dipping and the untreated cases. Treating conditions such as time, concentration and temperature were optimized. Four-fibers embedded micro-composites were prepared for fragmentation test. Interfacial properties of four-fiber composites with different surface treatments were investigated with simultaneous acoustic emission (AE) monitoring. The microfailure mechanisms occurring from fiber break, matrix and interlayer crackings were examined by AE parameters and an optical microscope. It was found that interfacial shear strength (IFSS) of electrodeposited carbon fibers was much higher than the other cases under dry and wet conditions. Well separated and different-shaped AE groups occurs for the untreated and ED treated case, respectively.

  • PDF

ACOUSTIC EMISSION CHARACTERISTICS OF STRESS CORROSION CRACKS IN A TYPE 304 STAINLESS STEEL TUBE

  • HWANG, WOONGGI;BAE, SEUNGGI;KIM, JAESEONG;KANG, SUNGSIK;KWAG, NOGWON;LEE, BOYOUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.454-460
    • /
    • 2015
  • Acoustic emission (AE) is one of the promising methods for detecting the formation of stress corrosion cracks (SCCs) in laboratory tests. This method has the advantage of online inspection. Some studies have been conducted to investigate the characteristics of AE parameters during SCC propagation. However, it is difficult to classify the distinct features of SCC behavior. Because the previous studies were performed on slow strain rate test or compact tension specimens, it is difficult to make certain correlations between AE signals and actual SCC behavior in real tube-type specimens. In this study, the specimen was a AISI 304 stainless steel tube widely applied in the nuclear industry, and an accelerated test was conducted at high temperature and pressure with a corrosive environmental condition. The study result indicated that intense AE signals were mainly detected in the elastic deformation region, and a good correlation was observed between AE activity and crack growth. By contrast, the behavior of accumulated counts was divided into four regions. According to the waveform analysis, a specific waveform pattern was observed during SCC development. It is suggested that AE can be used to detect and monitor SCC initiation and propagation in actual tubes.

Interfacial Evaluation and Microfailure Mechanisms of Carbon Fiber/Bismaleimide (BMI) Composites using Tensile/compressive Fragmentation Tests and Acoustic Emission (인장/압축 Fragmentation 시험법과 음향방출을 이용한 Carbon Fiber/Bismaleimide (BMI) Composites 의 계면 평가와 미세파괴 메커니즘 연구)

  • 김진원;박종만;윤동진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.79-83
    • /
    • 2000
  • Interfacial and microfailure properties of carbon liber/bismaleimide (BMI) composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Since BMI is rather difficult matrix to apply for the conventional fragmentation test because of its too low elongation and too brittle and high modulus properties, dual matrix composite system was applied. After carbon fiber/BMI composite was prepared for rod shape by controlling differing curing stage, composites rod was embedded in toughened epoxy as outer matrix. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile testing, whereas the diagonal slippage in fiber ends was observed during compressive test. On the other hand, AE amplitudes of BMI matrix fracture were higher than carbon fiber tincture under tensile test because BMI matrix has very brittle and high modulus. The waveform of signals coming from BMI matrix fractures was consistent with AE amplitude result under tensile tests.

  • PDF

The Analysis of Mechanical Properties of the High Frequency Induction Hardening SM45C Steel by Acoustic Emission (음향방출법에 의한 SM45C 고주파 열처리 강의 기계적 특성 평가)

  • Rhee, Zhang-Kyu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • This study deals with the high frequency induction hardening (HF at $850^{\circ}C$, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen, which was tempered at $150^{\circ}C$, did not show any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE (acoustic emission) amplitude distribution showed between 45dB and 60dB. (2) A slip and fracture occurred at the hole area of the HF specimen which was tempered at $300^{\circ}C$. As they pass the yield point, the AE energy is increased intermittently and AE amplitude distribution exists between 70dB and 85dB. In addition, after imposing the maximum tensile load, AE signals showed high amplitude and energy distribution. The AE amplitude showed between 45dB and 70dB. (3) A brittle fracture occurred at HF specimen which was tempered at $450^{\circ}C$ as if it is torn in the direction of $45^{\circ}$ on parallel area over the both sides of the tensile specimen, which lead to several peak appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.

Experimental study on acoustic emission characteristics of reinforced concrete components

  • Gu, Aijun;Luo, Ying;Xu, Baiqiang
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.67-79
    • /
    • 2015
  • Acoustic emission analysis is an effective technique for monitoring the evolution of damage in a structure. An experimental analysis on a set of reinforced concrete beams under flexural loading was carried out. A mixed AE analysis method which used both parameter-based and signal-based techniques was presented to characterize and identify different failure mechanisms of damage, where the signal-based analysis was performed by using the Hilbert-Huang transform. The maximum instantaneous energy of typical damage events and the corresponding frequency characteristics were established, which provided a quantitative assessment of reinforced concrete beam using AE technique. In the bending tests, a "pitch-catch" system was mounted on a steel bar to assess bonding state of the steel bar in concrete. To better understand the AE behavior of bond-slip damage between steel bar and concrete, a special bond-slip test called pullout test was also performed. The results provided the basis of quantitative AE to identify both failure mechanisms and level of damages of civil engineering structures.

Three Dimensional FE Analysis of Acoustic Emission of Composite Plate (복합재료 파손 시 발생하는 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung Jo
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.15-20
    • /
    • 2005
  • In this paper, damage induced acoustic emission in the composite plate in numerically simulated by using the three dimensional finite element method and explicit time integration. Acoustic source is modeled by equivalent volume source. To verify the proposed method, dynamic displacements due to the elastic wave are compared with the experiment when the fiber is broken in the single fiber embedded isotropic plate. For the laminated composite plates, the results are compared between homogenized model and DNS approach which models fibers and matrix separately. To capture high frequencies in the elastic wave, small time step size and a large number of meshes are required. The parallel computing technology is introduced to solve a large scale problem efficiently.

Detection and Analysis of Acoustic Emission Signal at the Epicenter on the Circular Glass Plate During Pencil Land Fracture (연필심 파괴시 유리원판의 진앙점에서 음향방출 신호의 검출 및 해석)

  • Lee, Jong-Gyu;Jang, Ji-Won;Park, Jeong-Man
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • Theoretical evaluations of the vertical displacement at the epicenter on the circular glass plate have been carried out in the case of the unit point loading(1 dyne force strength) with the Heaviside step-function time dependency. Acoustic emission signals generated during pencil lead($\Phi$=0.5mm, HB) fracture on the soda-lime glass($\Phi$=22cm, thickness=2.8cm) were observed by the optical Michelson interferometer with the stabilized circuit, and then the source function of the observed acoustic emission signals was analyzed by the deconvolution method. The source function of acoustic emission during pencil lead fracture had a 'dip' of~0.7$\mu$sec duration time at the front portion and a step function of~0.5$\mu$sec rise time with a force strength of~4.5N.

  • PDF