• 제목/요약/키워드: acoustic emission parameters

검색결과 158건 처리시간 0.031초

미소파괴음을 이용한 지반구조물 원격계측기술 (Remote monitoring technique for geotechnical structures using acoustic emission)

  • 천대성;정용복;박의섭;박찬;장현익
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.946-956
    • /
    • 2008
  • Acoustic emission(AE) is low-energy seismic event associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. Rock slopes are usually large in scale and there are many discontinuities in rock mass. AE waves are strongly attenuated when they propagate through joints. Thus we should resolve the attenuation problem to monitor large volume. In this study, we developed waveguide which is composed of two different materials, cement mortar and stainless steel rod. And several laboratory tests on developed waveguide are performed to obtain generalized AE parameters to predict the failure stage in rock slope. Comparing field data with experimental data in laboratory tests, failure stage of rock slope can be evaluated. To verify and optimize the developed monitoring method, we are now carrying out the field application at a rock slope.

  • PDF

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Damage Monitoring of Concrete With Acoustic Emission Method for Nuclear Waste Storage: Effect of Temperature and Water Immersion

  • Park, June-Ho;Kwon, Tae-Hyuk;Han, Gyeol;Kim, Jin-Seop;Hong, Chang-Ho;Lee, Hang-Lo
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.297-306
    • /
    • 2022
  • The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.

음향방출 기술을 이용한 철근콘크리트 보의 휨 파괴 손상평가 (Damage Assessment of Reinforced Concrete Beams Under Flexural Failure Mode Using Acoustic Emission Testing)

  • 김다위;이성로;박원석
    • 한국안전학회지
    • /
    • 제38권2호
    • /
    • pp.36-43
    • /
    • 2023
  • In this study, a four-point bending test was conducted to assess and detect the damage to reinforced concrete structures using the acoustic emission (AE) technique. Based on the crack investigation results, flexural failure was classified into four stages and compared with the characteristic analysis results of AE parameters. The parametric characterization indicated that the activity of the primary AE signal was high in the early stage, and that of the second signal increased after the flexural cracks stabilized. Because the secondary AE signal included noise generated by friction, parameter-based analysis for damage assessment was performed using the primary signal; the secondary signal was used as complement. The activity analyses of the primary and secondary signals effectively classified crack propagation; however, determining the macrocracks and yielding of reinforcing bars had certain limitations. Nevertheless, applying the damage index with cumulative AE energy is a complementary technique for detecting and assessing structure damage that well detects the occurrence of macrocracks.

음향방출 파형 파라미터 필터링 기법을 이용한 실시간 음원 분류 (Real-Time Source Classification with an Waveform Parameter Filtering of Acoustic Emission Signals)

  • 조승현;박재하;안봉영
    • 비파괴검사학회지
    • /
    • 제31권2호
    • /
    • pp.165-173
    • /
    • 2011
  • 음향방출기법은 대형 구조물의 구조건전성감시(SHM)를 위한 매우 효율적인 방법이지만, 롤러코스터 지지구조물처럼 승용물의 운행으로 인한 매우 큰 잡음이 일상적으로 존재하는 경우에는 균열 진전 신호만을 분류하여 실시간 감시를 수행하기가 쉽지 않다. 이와 같은 문제의 해결을 위해 본 연구에서는 실시간으로 음원의 분류가 가능한 파형 파라미터 필터링 기법을 제안하였다. 파형 파라미터 필터링 기법은 음향방출 신호의 파형 파라미터를 이용하여 음향방출 히트를 사전에 필터링함으로써 실시간으로 감시하고자 하는 대상 음원만을 분류해내는데 매우 유리한 점이 있다. 다양한 음원에 대해 음향방출 파형 파라미터를 측정 및 분석하여 제안한 기법의 타당성을 살펴보았다. 또한 파형 파라미터 필터가 내장된 음향 방출 시스템을 구축하고 이를 실제 롤러코스터 지지구조물에 적용하여 실시간 균열진전 감시를 위한 가능성을 타진하였다.

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

Determination of Damage Thresholds and Acoustic Emission Characteristics of Pocheon Granite under Uniaxial Compression

  • Jang, Hyun-Sic;Jang, Bo-An
    • 지질공학
    • /
    • 제28권3호
    • /
    • pp.349-365
    • /
    • 2018
  • The strain and acoustic emission (AE) signals of Pocheon granite were measured during uniaxial compression tests to investigate microcrack formation and damage. Crack closure, initiation, and damage stresses of each sample were determined through an analysis of the crack volumetric strain and stiffness. The samples experienced four damage stages according to stress levels: stage 1 = crack closure stage; stage 2 = elastic stage; stage 3 = crack initiation stage; stage 4 = crack damage stage. At least 75% of all AE signals occurred in stages 3 and 4, and different AE parameters were detected in the four stress stages. Rise time, count, energy, and duration clearly showed a tendency to gradually increase with the damage stress stage. In particular, the rise time, energy, and duration increased by at least 95% in stage 4 as compared with stage 1. However, the maximum amplitude showed a smaller increase, and the average frequency decreased slightly at higher stages. These results indicate that as the degree of rock damage increases, the crack size grows larger. The crack types corresponding to the AE signals were determined using the relationship between RA (Rise time / Amplitude) values and average frequencies. Tension cracking was dominant in all stress stages. Shear cracking was rare in stages 1 and 2, but increased in stages 3 and 4. These results are consistent with previous studies that reported cracking begins after samples have already been damaged. Our study shows that the state of rock damage can be investigated solely through an analysis of AE parameters when rocks are under compressive stress. As such, this methodology is suitable for understanding and monitoring the stress state of bedrock.

음향방출 및 초음파시험을 이용한 CFRP 시험편의 파괴 거동 해석 (Fracture Behavior Analysis in CFRP Specimens by Acoustic Emission and Ultrasonic Test)

  • 안석환;남기우
    • 비파괴검사학회지
    • /
    • 제21권3호
    • /
    • pp.251-260
    • /
    • 2001
  • 단조인장시험하에서 CFRP적층재의 손상과정을 음향방출과 초음파시험에 의해 평가하였다. 시험편으로부터의 음항방출신호의 진폭 분포는 기지재 균열(matrix crack), 박리(debonding), 섬유 pull-out 및 섬유 과단(fiber fracture)과 같은 CFRP에서의 파괴기구를 분석하는데 도움을 주며, 초음파 진폭감쇠의 특성 또한 각각의 파괴기구를 분석하는데 유용하다. 여러종류의 CFRP시험편을 사용하여 음향방출신호와 초음파신호의 진폭감쇠를 조사하였다. 끝으로 하중 제하중(loading-unloading) 시험이 초음파내의 진폭비에 대한 Felicity effect와 감쇠를 조사하기 위해서 수행되었다. 전 실험에 걸쳐 초음파신호의 진폭감쇠와 음향방출 파라미터(parameter)들은 동시에 검출되었다. 이로써 음향방출과 초음파시험의 두 파라미터들이 CERP에서의 파괴기구를 분석하기 위해 효과적으로 사용될 수 있음이 확인되었다.

  • PDF

음향방출과 초음파를 이용한 TIG 용접탄소강의 미시적 손상평가 (Evaluation of Microscopic Damage to TIG Welded Carbon Steel using Acoustic Emission and Ultrasonic Test)

  • 이준현;이진경
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.5-10
    • /
    • 2012
  • In this study, carbon steel (A53) is used as the material for the pipes in a marine plant and ship industry. Welds are necessary to join the carbon steel, and the effect of this welding on the properties of the carbon steel has been studied by many researchers. In this study, the dynamic behavior of welded carbon steel was studied using an acoustic emission (AE) technique, which is a nondestructive test. There are numerous AE parameters that can be used to analyze the damage behavior of carbon steel by external loading. The AE parameters of energy, cumulative count, amplitude, and AE event were used, and each parameter was differentiated according to the degree of damage to the carbon steel. The energy showed a high level at the elastic range of the load curve, while the amplitude had the highest value at the hardening region. The cumulative count showed a growth tendency similar to the loading curve. In addition, an ultrasonic technique and hardness test were applied to evaluate the mechanical properties according to the base zone, HAZ region, and weld zone of the weld specimen. The velocity and attenuation ratio showed little change between zones, and an evaluation of the ultrasonic waves on each zone of the specimen was found to be a useful method to clarify the mechanical properties of the carbon steel.

Dynamic fracture catastrophe model of concrete beam under static load

  • Chen, Zhonggou;Fu, Chuanqing;Ling, Yifeng;Jin, Xianyu
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.517-523
    • /
    • 2020
  • An experimental system on three point bending notched beams was established to study the fracture process of concrete. In this system, the acoustic emission (AE) was used to build the cumulative generation order (AGO) and dynamically track the process of microcrack evolution in concrete. A grey-cusp catastrophe model was built based on AE parameters. The results show that the concrete beams have significant catastrophe characteristic. The developed grey-cusp catastrophe model, based on AGO, can well describe the catastrophe characteristic of concrete fracture process. This study also provides a theoretical and technical support for the application of AE in concrete fracture prediction.