• Title/Summary/Keyword: acoustic emission parameters

Search Result 158, Processing Time 0.038 seconds

Study on the Real-Time Leak Monitoring Technique for Power Plant Valves (발전용 밸브누설 실시간 감시기술 연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Analysis of Acoustic Emission Signals from Fluid Leakage (유체 누출에서의 음향방출 신호분석)

  • 김용민;윤용구;김호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.413-421
    • /
    • 1990
  • Acoustic emission signals due to leak from circular holes of 0.4, 1, 2 and 4mm diameter and rectangular slits of different geometry having the same cross section as 4mm diameter hole was studied both analytically and experimentally. Acoustic emission signals from a wide-band type transducer were transformed to digital signals through a digital oscilloscope, and $V_{rms}$ and frequency spectrum were obtained by processing digital signals. Relationships between acoustic parameters and fluid mechanical parameters were derived analytically. A quadrapole aerodynamic model was applied in the analysis of leak from the circular holes and $V_{rms}$ was found to be proportional to the root square of leak rate through the circular hole. A modified model based on dipole source mechanism and laminar equivalent diameter was applied in the analysis of leak signals from the rectangular slits. In the case of constant pressure, $V_{rms}$ increased as the laminar equivalent diameter of slit decreased. In the case of constant laminar equivalent diameter, however the result was similar to that for leak from the circular hole. The frequency spectra of leak signals shows the same frequency characteristics irrespective of the pressure difference.rence.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method (외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

Data-Driven Modelling of Damage Prediction of Granite Using Acoustic Emission Parameters in Nuclear Waste Repository

  • Lee, Hang-Lo;Kim, Jin-Seop;Hong, Chang-Ho;Jeong, Ho-Young;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.

Study on Leak Detection of the Pipeline System by Acoustic Emission (음향방출(音響放出)에 의한 배관계(配管系)의 누출방지(漏出防止)에 관한 연구(硏究))

  • Yoon, D.J.;Kim, C.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.1
    • /
    • pp.7-17
    • /
    • 1987
  • Leak detection testing for the pipeline system was performed by the acoustic emission method. It was found that the detected signal spectrum was influenced by the frequency response of sensors and pressure changes. AE parameters and frequency spectrum distributions were used to analyze the leak signals. The slope rise time of AE parameters were the important factors for distinguishing leak signals. The amplitude of leak signal was more affected by the changes of leak, rate and pressure than those of leak type.

  • PDF

Acoustic Emission Characteristics of Ceramic Coated Steel by Plasma Spraying (플래즈머용사에 의한 세라믹 코팅 강재의 음향방출 특성)

  • Kim, G.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.49-54
    • /
    • 1998
  • This paper is investigated of hardness and adhesiveness of plasma sprayed coating steels by AE(Acoustic Emission) testing when loading a tensile. AE Parameters used are Event, Count, Energy and Amplitude. Test specimens are carbon steel(S45C) with sprayed coating layers of Ni-4.5wt.%Al(bond coating) and $TiO_2$(top coating), and carry out heat treatment at $800^{\circ}C\;and\;1000^{\circ}C$, respectively. The micro-hardness of the heat treatment specimen have been improved more than that of non-heat treatment. On the tensile test, the process and occurence of the exfoliation of the sprayed coating layer can be estimated by AE Characteristics of AE parameters, such as event, count, amplitude and energy, on the layer exfoliation are shown the similar aspects. The exfoliation of bond coating occure at about 20% of strain and top coating is about 5% of strain.

  • PDF

A study on Quench Characteristics considering Winding Tension in Superconducting Coil using Acoustic Emission Technique (권선장력을 고려한 초전도 계자코일의 퀀치특성 및 AE 신호특성에 관한 연구)

  • 이준현;이민래;손명환;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.8-14
    • /
    • 1999
  • In this study, acoustic emission(AE) technique has been applied to detecting quench which is one of the serious peoblems to assure the integrity of superconducting coil at cryogenic temperature. The characteristics of AE parameters have been analyzed by correlating with the number of quenches, whinding tension of superconducting coil and charge rate of transport current. The quench localization was also performed using AE signals and there was also good correlation between quench current and AE parameters such as AE energy and AE events. In this study, it was confirmed that AE signals were mainly due to the conductor motion which caused by premature quenching. It was also found that optimized winding tension at superconducting coil was needed to prevent quench caused by conductor motion.

  • PDF

Optimization of Nano-machining parameters using Acoustic Emission and Taguchi Method (음향방출과 다구찌 방법을 이용한 나노머시닝 가공조건의 최적화)

  • 손정무;이성환;최장은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.50-55
    • /
    • 2003
  • Atomic force microscope(AFM) techniques are increasingly used for tribological studies of engineering surfaces at scales ranging from atomic and molecular to microscale. AFM with suitable tips is being used for nanofabrication nanomachining purposes. In this paper, machining characteristics of silicon have been investigated by nano indentation and nano scratch. Mechanisms of material removal on the microscale are studied and the Taguchi method is introduced to acquire optimum parameters for nanomachining. This work shows effectiveness of the Taguchi method in nanomachining. Also, Acoustic Emission(AE) is introduced for the monitoring of nanomachining.

  • PDF

Optimization of Nano Machining Parameters Using Acoustic Emission and the Taguchi Method (음향방출과 다구찌 방법을 이용한 나노머시닝 가공조건의 최적화)

  • 이성환;손정무
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.163-170
    • /
    • 2004
  • Atomic force microscope (AFM) techniques are increasingly used fur tribological studies of engineering surfaces at scales ranging from atomic and molecular to micro-scale. Recently, AFM with suitable tips is being used for nano fabrication/nano machining purposes. In this paper, machining characteristics of silicon were investigated by nano indentation and nano scratch. Nano-scale material removal mechanisms are studied and the Taguchi method was introduced to acquire optimum parameters for nano machining. Also, Acoustic Emission (AR) is used for the monitoring of nano machining.