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Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies 
mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. 
In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial 
compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, 
counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input param-
eters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When 
GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 
and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that 
cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting 
rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field 
rock mass of nuclear waste repository.
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1. Introduction

Monitoring the nuclear waste repository located in un-
derground is required for preventing performance deg-
radation over time. There are various factors that affect 
the long-term integrity of the repository, and high in-situ 
stress around the repository and rock damage caused by 
excavation are the main considerations. Rock damage 
creates microcracks, which propagate and bond, leading 
to macrocracks. Due to this, excavation damage zones are 
formed in the surrounding rock mass, and the stability of 
the repository may be decreased by deteriorating the me-
chanical properties of the rock mass.

Most of the rock mass damage from excavation oc-
curs immediately after excavation, but if the in-situ stress 
is high, damage occurs over a long period of time, affect-
ing the long-term stability of the repository. Therefore, to 
ensure the long-term integrity of the repository, it is im-
portant to understand the damage of the in-situ rock mass.

Acoustic emission (AE) is a kind of non-destructive 
test and has been used to monitor the damage of vari-
ous materials including rock mass. It is a kind of elastic 
waves generated when accumulated deformation energy 
in a material releases rapidly. Utilizing the AE method, 
some works have been conducted for evaluating the rock 
damage and cracking stages [1-4]. Kim et al. [5] evalu-
ated the degree of damage of KURT granite by identify-
ing the relationship between AE amplitude and cumula-
tive frequency. In addition, the damage of rock based on 
AE energy was evaluated and compared with the exist-
ing methods. Other researchers tried to correlate crack 
evolution characteristics with AE counts from uniaxial 
compression test [6, 7]. Wu et al. [8] evaluated the quan-
titative damage stress using cumulative AE count. Zhao 
et al. [9] analyzed the relationship between crack devel-
opment and the number of AE hits for Beishan granite. 
The result was confirmed that the number of AE hits in-
creased as the stress increased, and the number of hits 
increased sharply as the stress is close to failure. There 

have some works to evaluate the failure mode of rock 
based on AE parameters [10, 11]. They classified the 
failure mode into shear and tensile failure by using the 
relationship between the RA value obtained by dividing 
the AR rise time by the maximum amplitude, and the av-
erage frequency which is dividing the number of counts 
by the duration time. 

The aforementioned works used one or two AE param-
eters to determine the degree of damage, damage criterion, 
and failure mode of rock. However, studies in consider-
ation of several AE parameters has been rarely conducted.

In this study, we aim to propose a predictive model for 
the rock’s damage that considers various AE parameters. 
For data acquisition, five granite specimens were pre-
pared, and various AE signal data were obtained from a 
uniaxial compression test. By considering the AE param-
eters, we develop several data-driven predictive models 
and compare their performance. For model interpretation, 
relative importance between AE parameters influencing 
the damage prediction is analyzed.

Fig. 1. Stress-strain curve with the four stages according to crack 
development (Martin and Chandler, 1994).

Axial
Stress (MPa)

Ⅰ

Ⅱ

Ⅱ

Ⅳ

ⅣⅣ

Ⅲ

Ⅲ

Ⅴ

Ⅴ

Unstable Cracking

Crack Initiation
Elastic Region

Crack Closure

Lateral Strain %

ΔV
N

 %
Co

nt
ra

ct
io

n
D

ila
tio

n

Axial Strain %

Axial Strain %
O

ns
et

 o
f P

os
t-p

ea
k

-0.2	 -0.16	 -0.12	 -0.08	 -0.04	 0	 0.1	 0.2	 0.3	 0.4

0	 0.1	 0.2	 0.3	 0.4

Stable Crack Growth 

200

≈80%

≈40%

E

σf

σf

σ1

σ3

σf (Peak)

σcd

σci
100

Axial
Strain Gauge

Crack
Closure Crack

Growh

Calculated
Crack Volumetric

Strain

Total
Measured
ΔV/V %

0.2

0.1

0

-0.1
Lateral
Strain Gauge



Hang-Lo Lee et al. : Data-Driven Modelling of Damage Prediction of Granite Using Acoustic Emission Parameters in Nuclear Waste Repository

JNFCWT Vol.19 No.1 pp.75-85, March 2021 77

2. Theoretical background

2.1 Quantitative damage
The reliability of quantitative damage evaluation is 

secured from the determination of accurate crack damage 
criteria. In general, the crack damage criterion for rock 
is determined through a laboratory experiment of stress-
strain measurement. Brace et al. [12] and Bieniawski [13] 
determined the damage criterion for crack propagation 
through the relationship of axial strain according to stress 
for brittle materials. Martin and Chandler [14] evaluated 
the criterion for crack damage using inelastic volumetric 
strain. The propagation of crack damage of a structure can 
be characterized by four stages as shown in Fig. 1: crack 
closure, crack initiation, crack propagation, and crack 
damage [14-16].

Kim et al. [17] quantified the crack damage stage using 
inelastic volumetric strain for granite. Axial and horizontal 
strain depending on the increment of the load were ob-
tained from a uniaxial compressive test, and then volumet-
ric strain and stiffness were calculated using stress-strain 
relationship (Fig. 2). In this study, to quantify the degree 
of damage, the inelastic volumetric strain was associated 

with the damage degree of the rock. The inelastic volumet-
ric strain was calculated using the eq. (1) and (2) based on 
the stress-strain relationship.

ϵυ
ie = ϵυ − ϵυ

e = ϵυ− (ϵe
Axial + ϵe

Lateral)	 (1)
	

                     ϵυ
ie = ϵυ − (1−2υ)

E  σAxial	 (2)

Where, ϵυ is volumetric strain, ϵυ
e is elastic volumetric 

strain, and ϵυ
ie indicate the inelastic volumetric strain. ϵe

Axial 
and ϵe

Lateral means axial and horizontal strain. E, υ and σAxial  
indicate the elastic modulus, poisson’s ratio, and axial 
stress, respectively.

2.2 Acoustic emission

Acoustic emission (AE) has been mainly used to evalu-
ate the crack localization, crack condition, and crack dam-
age criteria of the structural material through real-time 
monitoring. When the deformation energy is accumulated 
inside the material due to external load, an AE signal with a 
low amplitude level is generated due to microscopic crack-
ing. After that, when the material reaches failure, the am-

Fig. 2. (a) Uniaxial compressive test and (b) volumetric strain and stiffness on granite specimen 1.
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plitude of the signal increases significantly as releasing the 
accumulated energy due to sliding the macroscopic crack 
[18]. Therefore, monitoring through AE is an efficient 
method to evaluate the damage history of the material ac-
cording to the stress level [19].

The AE signal due to the crack in the material is col-
lected in the form of an electrical waveform through the 
AE sensor (Fig. 3). AE parameters can be characterized 
such as maximum amplitude, the number of hits, count, 
rise time, and absolute energy. In addition, AE signals 
can be expressed as a frequency through frequency 
transform.

 

3. Data-driven techniques

3.1 Support vector regression

SVR which is a kind of supervised learning is a tech-
nique for dealing with the regression problem of support 
vector machine [20]. This method has a good generalization 
ability even in a limited number of data because it is based 

on the principle of minimum structural risk rather than em-
pirical risk minimization [21].

When given the {(x1,y1),…,(xi,yi)} ⸦ Rd in SVR, this 
method has the form of the following equation, and the goal 
is to find the optimum w and b.

 
yi = wT (xi) + b	 (3)

Where, w, b indicates the weighted vector and bias, re-
spectively. (xi) means the high-dimensional feature space 
mapped nonlinearly from d-dimensional input space Rd.

SVR is an ε-insensitvie model that is not sensitive 
to ε and learn to include as many samples as possible 
in a limited margin error (ε) tube (Fig. 4). Within the ε 
allowed, the error is regarded as zero value even though 
the training samples are added. However, if the sample 
is outside the ε tube, a non-zero slack variable (ζ) occurs. 
Hereby, the ζ represents the degree to which margins are 
violated.

Based on the above principle, ε-insensitvie model can 
be composed of the following convex optimization prob-
lem, and thus Eq. (3) can be approximated to Eq. (4).

Fig. 3. Acoustic emission signal and characterized parameters 
(Chai et al., 2017).
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minimize 12 wT w + C∑

i =1

m

 (ζi
+ + ζi

−)
w,b,ζ

subject to	 yi − (wT∙ϕ(xi) + b) ≤ ε + ζi
+

	 (wT∙ϕ(xi) + b) − yi ≤ ε + ζi
−	 (4)

	 ζi
+,ζi

− ≥ 0

Here, C > 0 is a regulation parameter indicating a pen-
alty for sample error exceeding the margin ε. A larger C 
value means that a smaller slack variable value is allowed, 
whereas a smaller C value means a smaller slack variable 
value is allowed. ϕ is a function that maps the input space of 
the training dataset into a high-dimensional feature space.

In Hilbert’s space, the result of the operation between 
ϕ can be easily calculated using the dot product of a vec-
tor without the explicit function form of ϕ, and can be ex-
pressed as a kernel function (K) as in Eq. (5);

K(xi,xj) = <ϕ(xi),ϕ(xj)>	 (5)

Kernel function plays a role of expanding the input space 
of the training dataset into a high-dimensional space and 
make it possible to implement the non-linearity of complex 
datasets. There are various types of kernel functions estab-
lished by researchers, and they are summarized in Table 1.

On the other hand, the problem solving the Eq. (4) can 
be easily solved by transforming it into the form of pri-
mal and dual functions based on the Lagrange multiplier 
method. This form of the function is a quadratic optimiza-
tion problem and has a unique solution for w, b. A detailed 
explanation of the problem can be found in the literature 
[20].

3.2 Tree-based gradient boosting

Unlike one strong model, tree-based gradient boosting 
(GB) is one of the ensemble techniques that combines mul-
tiple weak models. The principle behind this method is to 
build a strong model by successively combining decision 
trees, called weak models, into an ensemble. It is suitable 
for complex nonlinear problems since GB has a number 
of tuning parameters, and mainly used for the purpose of 
maximizing performance.

GB is an approach to finding the ensemble model F̂ in 
the weighted form of the function h for the weak model (Eq. 
(6)).

F̂m (x) = ∑
m=1

M

  αmhm(x) + C	 (6)

Where, M is the number of weak model, αm is the coef-
ficient of m th weak model, and C is a constant. F̂m starts 
with a constant value F̂0 (x), and the function gradually in-
crements according to the greedy approach (Eq. (7)).

F̂m(x) = F̂m−1 (x) + argmin [∑
i=1

L(yi , Fm-1(xi) + αmhm(xi))]
F̂0(x) = argmin ∑

i=1
L(yi ,α) 	 (7)

αm hm

n

n

α

Calculating the function hm in Eq. (7) is a non-comput-
able optimization problem. To solve this problem, a method 
of calculating h using a negative slope called the pseudo 
residual has been proposed. For more information on this 
theory, it is recommended to refer to Friedman [22].

The tuning parameters of tree-based gradient boosting 
can be divided into two categories: Maximum depth of the 
tree, maximum number of leaves as a single tree, and the 
number of weak models, contribution degree of the weak 
model as GB. These are all tuning parameters that control 
the complexity of the model. Since GB is based on the 
construction of numerous weak models with low depths of 
trees, the maximum depth of the tree does not exceed five 
in general [23].

Kernel function Formula

Linear K(xi,xj) = <xi,xj>
Polynomial K(xi,xj) = (y <xi,xj> + coef.)d

RBF K(xi,xj) = exp (−‌r ||xi − xj||2)

Table 1. Several kernel functions used in SVR
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4. Data preparation

To construct a dataset to be used for supervised learn-
ing modeling, uniaxial compressive tests were conducted 
on five granite specimens. The crack damage criterion was 
obtained through the stress-strain relationship, and the de-
gree of damage was calculated using the inelastic volumet-
ric strain. The mechanical properties of the five specimens 
and the results of the experimental test can be seen from 
Kim et al. [5] in detail.

Eight AE sensors were attached to each specimen to 
obtain the AE signal according to the stress level. The AE 
signal can be characterized by various AE parameters, and 
the cumulative amplitude, hits, count, rise time, absolute 
energy, and initiation frequency were selected as input pa-
rameters for a prediction of damage.

In supervised learning, the entire dataset should be di-
vided into a training set and a testing set. The training set is 
used for model training and hyper-parameter tuning, while 
the testing set is used for performance evaluation. In this 
study, 80% of the entire dataset was considered a training 
set (2,926 sets), and the remaining 20% were sampled to 
a testing set (732 sets). Descriptive statistics for the entire 
dataset is summarized in Table 2.

 
5. Result and discussion

5.1 Model optimization

Hyper-parameters must be pre-trained before build-
ing the model. Hyper-parameter selection is an essential 
process because performance varies greatly depending on 
the combination of hyper-parameter set. Therefore, we 
tried to search for the hyper-parameter set that has the best  

Index Damage Amplitude 
(dB) Number of Hit Number of Count Rise Time 

(us)
Absolute     

Energy (aJ)
Initiation 

Frequency (kHz)

count 3,688 3,688 3,688 3,688 3,688 3,688 3,688 

mean 0.34 41,936 539 6,886 9,134 3.6×1012 58,684 

std 0.29 22,249 285 4,687 4,761 7.6×1012 33,201 

min 0.00 1,993 25 208 330 4.4×1010 2,163 

25% 0.10 23,000 297 3,143 5,125 9.5×1011 32,576 

50% 0.25 41,084 528 6,293 9,187 2.1×1012 53,810 

75% 0.55 59,405 763 9,247 12,842 3.5×1012 85,026 

max 1.00 89,038 1,135 33,872 19,982 1.2×1014 128,650 

Table 2. Descriptive statistics for the dataset used in data-driven modeling

Fig. 5. Cross validated coefficient of determination versus 
number of iteration.
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performance.
For hyper-parameter tuning, random sampling was 

used. The grid search reflects all combinations of sets, thus 
it’s obvious, but it takes quite a while. To reduce the tem-
poral cost, random sampling was used in this study, and 
it is known that it shows good performance as a result of 
simulation [24].

Fig. 5 shows R2 in ascending order according to 500 
random samplings for each model. Regardless of the da-
ta-based method, R2 increased rapidly and then showed 
a tendency to converge. All the SVRs generally showed 
a pattern to converge after 80 times, but the model GB 
represented a gradually increasing trend after 10 times. 
Most of the increase was achieved at 84.6%, 82.8%, 
71.2%, and 77.2% of the whole increase for GB, SVR-

RBF, SVRpolynomial, and SVRlinear. In the final stage, the 
maximum R2 was recorded as 0.93, 0.90, 0.87, and 0.72 
for GB, SVRRBF, SVRpolynomial, and SVRlinear. The nonlinear 
functions showed higher R2 compared with the SVRlinear. 
The results indicate that the relationship between the AE 
parameters and the degree of damage has a non-linear 
relation. The GB model was finally selected in this study 
because GB has the highest global performance in the 
final stage.

5.2 Results of the optimum models

The selected GB model was evaluated for the training 
set and the testing set using the indices R and RMSE. The 
performance results for the training set indicate the good-
ness of learning, while the performance for the testing set 
describes the generalization ability of the model [25].

Fig. 6(a) shows the comparison result of the observed 
and predicted damage of the optimum GB model for the 
training set. The correlation R between the observed and 
the predicted value of the GB model with the optimum hy-
per-parameter was 0.97, which can be seen as a high learn-
ing performance for the training set with nonlinearity. The 
RMSE was 0.073, and it can be explained that it shows an 
error rate of 7.3% for the normalized damage.

The GB model trained with optimum hyper-parame-
ters was verified as testing set for generalization perfor-
mance, and the results can be seen in Fig. 6(b). The R and 
RMSE of the GB model for the testing set were 0.96 and 
0.077, respectively, which were almost similar to the re-
sults for the training set. This finding can be explained as 
showing good learning ability without over-fitting for the 
training set and simultaneously high generalized predic-
tion performance.

Fig. 6. Performance of the optimum GB model on (a) training set and (b) testing set.
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5.3 �Importance analysis for cumulative AE 
parameters

For a better understanding model, not only model pre-
diction but also model analysis should be performed in par-
allel. The partial dependence proposed by Freidman [22] 
means the margin effect of the influence parameter on the 
prediction result of the data-driven model. In other words, 
it evaluates whether the relationship of each influence pa-
rameter to the target parameter is linear, nonlinear, or has 
little relationship. The parameter importance proposed by 
Breiman et al. [26] is a value representing the importance 
of the influence parameter in the decision tree. In GB, pa-
rameter importance is calculated using the average value 
derived from multiple decision trees [22], and express the 
contribution of the influence parameter to the prediction of 

the target. 
Fig. 7 shows the results of partial dependence on each 

influence parameter. In general, the higher the change in 
partial dependence depending on the change of the influ-
ence parameter, the higher the importance of the influence 
parameter. The partial dependence of the cumulative abso-
lute AE energy showed a strong positive correlation. The 
AE energy is known to be due to the energy released by the 
crack growth of the rock [27], and thus is directly propor-
tional to the actual energy of the rock [5]. This evidence can 
be considered to be consistent with the result of the positive 
correlation between the damage degree and the cumulative 
AE energy.

Fig. 8 describes the importance of each input parameter 
to the degree of damage. The importance of the cumulative 
absolute energy was found to be 0.78 and considered as 

Fig. 7. Partial dependence plots of AE parameters in optimum GB model for prediction of damage.
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the dominant parameter affecting the prediction of damage. 
Among AE parameters, Kim [28] correlated quantitative 
damage to AE energy including an in-situ test. These re-
sults also support the results of several other studies [5, 18].

The frequency characteristics showed the importance of 
0.1 for the prediction of damage. The frequency distribu-
tion is known to be related to the stress level including rock 
type and degree of fracturing [29]. In light of this, the AE 
frequency is definitely associated with the damage degree, 
but it is not proper to use alone due to the low importance. 
In addition, since the value varies with the type of AE  
sensor used for measurement and the adhesion condition to 
rock [30], and thus must be considered together with sev-
eral AE parameters.

6. Conclusion

Various data-driven predictive models for the dam-
age evaluation on five granite rocks were introduced and 
compared in this study. To increase the reliability of the 
model, several AE parameters characterized from the AE 
signal were considered. For a better understanding for the 
model, parameter analysis was conducted for the prediction 
of damage. The conclusion derived from the results can be 

summarized as follows;
1. �As a result of cross-validation for optimum hy-

per-parameter selection, the maximum R2 of 0.93, 
0.90, 0.87, and 0.72 were derived by GB, SVRRBF,  
SVRpolynomial, and SVRlinear models in the final conver-
gence stage. The nonlinear models showed higher R2 
compared to the linear model SVRlinear. This shows 
that there is a nonlinear relationship between the AE 
parameter and the degree of damage;

2. �Among the nonlinear models, the GB model showed 
the highest cross-validated R2. It can be seen that the 
GB model expresses the nonlinearity between the 
damage and AE parameters of the rock better than 
the nonlinear SVR;

3. �As a result of applying the optimum GB model to 
testing set. The R value between predicted and true 
damage showed high scores of 0.96, which is similar 
with the result (R = 0.97) for training set. The small 
difference between these results indicates the good-
ness of both learning degree and generalization per-
formance without over-fitting;

4. �The partial dependence of the cumulative absolute 
AE energy on damage degree represented a strong 
positive increase. This shows that as the absolute 
AE energy increases, the degree of damage increas-

Fig. 8. Importance of AE parameters in optimum GB model for damage prediction.
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es proportionally, and it can be seen that there is a 
strong positive correlation. In addition, the cumula-
tive absolute energy showed the highest importance 
of 0.78, which means that the cumulative absolute 
energy is the most important parameter to the dam-
age prediction in the GB model;

from the study, we confirmed that this finding gives insights 
that AE has possibility in predicting the quantitative dam-
age of the rock without the mechanical test. It is expected 
to be useful works as a basic study for monitoring the rock 
mass near the nuclear waste repository.
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