• 제목/요약/키워드: acoustic cavity

검색결과 239건 처리시간 0.025초

혼합 경계를 가진 임의 형상 음향 공동의 고정밀도 고유치 추출 기법 (Extraction of eigenvalues of acoustic cavities with a mixed boundary)

  • 강상욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.404-406
    • /
    • 2014
  • The NDIF method is developed for eigenvalue analysis of arbitrarily shaped two-dimensional acoustic cavity with a mixed boundary, which consists of rigid-wall and open boundaries. The NDIF method, which was developed by the author in 2000, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods (FEM and BEM). The validity of the proposed method is shown in a case study, which indicate that eigenvalues obtained by the proposed method are more accurate compared to the exact method or FEM(ANSYS).

  • PDF

소형 위성 발사체의 페이로드 페어링부에 대한 음향 가진 시험 (Acoustic test of the payload fairing of Korea satellite launch vehicle)

  • 박순홍;서상현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.220-223
    • /
    • 2007
  • Acoustic test of the payload fairing of Korea satellite launch vehicle was conducted to verify the performance of acoustic protection system installed inside the payload fairing. This paper briefly introduces the acoustic test procedures and its results. Overall 148 dB acoustic loads were exerted on the payload fairing structures which mated with the upper stage structure of the launch vehicle. In order to verify the increase of insertion loss by the acoustic protection system, two kinds of test were performed. One is conducted with acoustic protection system and the other without acoustic protection system. Internal acoustic loads as well as external ones were measured and the measured insertion losses were compared with the requirement. The results showed that the acoustic protection system increases the insertion loss by more than 6 dB above 125 Hz. They also indicated that some design modification of Helmholtz resonator array is required to increase the insertion loss at a cavity resonant frequency.

  • PDF

직사격형 공동에서 덮개 효과에 대한 수치적 연구 (Numerical Investigation of the Cover-Plates Effects on the Rectangular Open Cavity)

  • 허대녕;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.457-464
    • /
    • 2001
  • The aeroacoustic phenomena in the simple rectangular open cavity are well published by many researchers. But the geometry shapes of aircraft landing gear wells, weapon bays, etc. are more complicate than that of the simple retangular cavity. They are more similar to the cavity having cover-plates at adges, or Helmholtz resonator. Therefore, the effects of cover-plates existing on edges of rectangular open cavity are numerically investigated in this paper. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions and buffer zone techniques are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoustic field. Results show that the cover-plates existing on edges of cavity reduce the noise convected from cavity, make the frequency of noise become higher, and change the directivity pattern. So these results can be used in the design of a low noise cavity.

  • PDF

위성 발사체 탑재부 저주파 음향 모드 제어를 위한 공명기 배치 설계 (Design of Acoustic Resonator Array for Low Frequency Mode Control of Launch Vehicle)

  • 서상현;박순홍;장영순;이영무;조광래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.521-524
    • /
    • 2005
  • To protect a satellite and electronic equipment from the acoustic loads generated by rocket propulsion system, many launch vehicle use acoustic blanket. Most high frequency region of the acoustic loads is reduced by nose fairing skins and acoustic barrier, but low frequency region is not. In order to control low frequency acoustic mode, we designed away resonator panel which was made of composite materials. This paper shows the absorption coefficient measurement result of resonator and SPL(Sound Pressure Level) reduction by using resonators in a rectangular cavity for experiment. Proper arrangement of acoustic resonators at each mode reduce effectively SPL around the satellite through changing boundary condition.

  • PDF

직접 경계요소법과 연속계 설계민감도 해석법을 이용한 소음 설계 민감도 해석 (Global Acoustic Design Sensitivity Analysis using Direct BEM and Continuum DSA)

  • 왕세명;이제원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.81-87
    • /
    • 1998
  • In this paper, a global acoustic design sensitivity analysis (DSA) of field point pressure with respect to structural sizing design variables is developed. Firstly acoustic sensitivity is formulated and implemented numerically. And it is combined with continuum structural sensitivity to obtain the global acoustic, design sensitivity. For this procedure, GASA (global acoustic design sensitivity analyzer) has been developed. A half scale of automobile cavity model is considered in this paper. In order to confirm accuracy of the results of global acoustic DSA obtained by GASA, it is compared with the result of central finite difference method. In order to reduce computation time, Rayleigh approximated solution is evaluated and compared with the solution which used every nodal velocities. Also the acoustic optimization procedure is performed using design sensitivities. From these numerical studies, it can be shown that global acoustic DSA is a useful tool to improve acoustic problems.

  • PDF

Aeroacoustic Investigation of a Cavity with and without Doors by Delayed Detached Eddy Simulation

  • Liu, Yu;Tong, Mingbo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.19-27
    • /
    • 2015
  • In the present study, an effort was made to numerically investigate rectangular cavity aeroacoustics with and without doors. The simulation was performed on an open cavity with an aspect ratio of 5:1:1 at Mach 0.85 using the delayed detached eddy simulation (DDES) approach based on the Spalart-Allmaras model. Two cavity configurations, a clean cavity and a cavity with doors, were modeled. The results obtained from the clean cavity were compared with the experimental sound pressure levels (SPL) and the root mean square for the pressures applied. Furthermore, comparisons of frequencies were made using a modified semi-empirical Rossiter formula. The simulation using DDES precisely predicted the pressure fluctuation and the results matched the experiment quite well. The SPLs at the rear of the cavity were much higher than those in the front due to the instability of the shear layer impinging on the rear wall. Comparisons of DDES for the clean cavity and the doors-on cavity revealed that the SPLs inside the cavity as well as the magnitude of tones are amplified by the side doors. The main focus of this investigation was to obtain a better understanding of the open cavity acoustic resonance phenomenon and investigate the effects of cavity doors on the SPL.

프로브 마이크로폰을 사용한 귓속형 보청기 성능 검사장치 개발 (ITE Hearing Aid Specification Testing Devise Development using Probe Microphones)

  • 장순석;권유정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1044-1047
    • /
    • 2003
  • An acoustic testing device composed of 2 probe microphones was developed for the electro-acoustic specification testing of the ITE (In-The-Ear) hearing aid (HA). The amplitude ratio and the phase difference between the incident pressure onto the HA microphone and the outward pressure of the HA receiver were measured by the present acoustic system. The microphones were particularly used because of small acoustic cavities where input and output pressures were present. The acoustic wall composed of clay completely blocks the propagation of the sound pressure between the small acoustic cavities. The system has an advantage of structural flexibility for the acoustic testing of different sizes and shapes of ITE-type HAs.

  • PDF

차세대 고속전철 차량연결부의 저소음 형상설계를 위한 차량연결부의 2차원적 수치해석 연구 (Two Dimensional Numerical Study in Gangway of Next Generation High Speed Train For Reduction of Aero-acoustic Noise)

  • 강형민;김철완;조태환;전완호;윤수환;권혁빈;박춘수
    • 한국철도학회논문집
    • /
    • 제14권4호
    • /
    • pp.327-332
    • /
    • 2011
  • 본 연구에서는 차세대 고속전철의 차량 연결부 저소음 형상 설계를 위한 선행연구로서 차량연결부의 공기역학적 소음 해석을 수행하였다. 이를 위해 차량 연결부는 Mud Flap 형상을 고려한 2차원 Cavity로 가정하였으며, Mud Flap 사이의 간극을 주요 변수로 하여 5개의 간극에 대하여 Parametric Study를 수행하였다. 이를 토대로 차량 Mud Flap 사이의 간극에 따른 Vortex Shedding 등의 유동 특성에 대한 해석을 수행하였다. 또한 높이 별로 3개의 Microphone 위치를 선정하고 간극에 따른 Tonal Noise 및 Overall Noise 등의 공기역학적 소음 특성을 분석하였으며, 차량 연결부 Mud Flap 간 간극 및 소음 특성 간의 상관 관계를 평가하였다. 그 결과 기본 및 특정한 Mud flap 간 간극에서의 소음 특성이 다른 형상에 비해 우수함을 확인하였다.

Usefulness of nasal cavity evaluation before high-resolution esophageal manometry in high-risk patients

  • Hyun Jin Min;Jae Yong Park
    • The Korean journal of internal medicine
    • /
    • 제39권1호
    • /
    • pp.86-94
    • /
    • 2024
  • Background/Aims: A catheter is inserted through the nasal cavity during high-resolution esophageal manometry (HRM), which may cause adverse events such as pain or epistaxis. Despite these possible safety considerations, studies on this subject are very limited. We aimed to investigate the usefulness of nasal cavity evaluation before HRM to reduce the risk of adverse events and test failure. Methods: Patients who underwent HRM after consultation with the ear-nose-throat department for nasal evaluation were retrospectively enrolled between December 2021 and May 2022. The included patients had a previous history of sinonasal disease or surgery or had subjective nasal discomfort. All patients answered the Sino-Nasal Outcome Test (SNOT-22) questionnaire, and subjective nasal discomfort was scored using a visual analog scale. Nasal endoscopy and acoustic rhinometry were performed for disease evaluation and volumetric assessment. Results: The analysis included 22 patients with a mean age of 58.9 years. The mean SNOT-22 score was 24.2, and 16 patients (72.7%) complained of subjective nasal obstruction. The HRM catheter was successfully inserted in 20 patients (90.9%), without any significant adverse events. The objective measurement outcomes of acoustic rhinometry and sinus endoscopy did not always correspond to subjective symptoms. Narrowed nasal airways unresponsive to decongestants were observed in two patients with failed catheter insertion. Conclusions: To reduce the risk of adverse events and test failure during HRM, a site-specific questionnaire to evaluate nasal obstruction might be helpful. When nasal obstruction is suspected, objective nasal cavity evaluation could be recommended for the safe and successful performance of HRM.

파워흐름해석법을 이용한 중고주파수 대역 소음해석 프로그램 개발 (Development of Noise Analysis Program by using Power Flow Analysis in Medium-to-high Frequency Ranges)

  • 권현웅;송지훈;홍석윤
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.384-390
    • /
    • 2012
  • Power Flow Analysis (PFA) is introduced for solving the noise and vibration analysis of structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C{+}{+}}$ R4 based on Power Flow Finite Element Method (PFFEM) and the noise prediction software, $NASPFA_{C{+}{+}}$ R1 based on Power Flow Boundary Element Method (PFBEM) are developed. In this paper, the coupling equation which represents relation between structural energy and acoustic energy is developed for vibro-acoustic coupling analysis. And vibro-acoustic coupling analysis software based on PFA and coupling equation is developed. Developed software is composed of translator, cavity-finder, solver and post-processor over all. Translator can translate FE model into PFADS FE model and cavity-finder can automatically make NASPFA BE model from PFADS FE model for noise analysis. The solver module calculates the structural energy density, intensity of structures, the fictitious source on the boundary and the acoustic energy density at the field in acoustic cavities. Some applications of vibro-acoustic coupling analysis software to various structures and cruise ship are shown with reliable results.