• Title/Summary/Keyword: acoustic cavity

Search Result 238, Processing Time 0.025 seconds

New Formulation of MNDIF Method for Eigenvalue Analysis of Acoustic Cavities (음향 공동의 고정밀도 고유치 해석을 위한 새로운 MNDIF 법 정식 개발)

  • Kang, S.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.658-663
    • /
    • 2013
  • A new formulation of the MNDIF method is introduced to extract highly accurate eigenvalues of concave acoustic cavities with arbitrary shapes. It is said that the MNDIF method cannot yield accurate eigenvalues for concave cavities. To overcome this weak point, a new approach of dividing a concave cavity into two convex domains is proposed. The validity of the proposed method is shown through a case study.

  • PDF

A Study on the Acoustic Absorption Character of a Helmholtz Resonator in Model Chamber (모형연소실에 장착한 헬름홀츠 공명기의 흡음특성에 관한 연구)

  • Park, Ju-Hyun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.399-402
    • /
    • 2009
  • Acoustic design parameters of a Helmholtz resonator are studied experimentally and numerically for acoustic stability in a model acoustic tube. According to standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of sound absorption coefficient are evaluated and thereby, the acoustic damping capacity of the resonator is characterized. Helmholtz resonator on spring-damper system use were understanding for acoustic damping. The length of orifice and the volume of cavity of resonator are selected as design parameters for tuning of the resonator. Acoustic- damping capacity of the resonator increases with its cavity volume. And orifice length as increases with acoustic damping capacity was decreased.

  • PDF

Backhole as an Acoustic Damper for the Swirl Injector (스월 인젝터의 음향학적 감쇄기로서의 백홀에 대한 연구)

  • 황성하;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.153-156
    • /
    • 2003
  • Backhole, which is one of geometric parameters in swirl coaxial injectors, is found to affect the inner flow motion and the acoustic characteristics of the swirl injector. In order to analyze the effect of the backhole as a damping device such as acoustic cavities of the combustion chamber, it was regarded as a Helmholtz or Quarter-wave resonator. As a result, it is known that the swirl coaxial injector with the backhole may produce the resonant frequency coincided with the frequency of the combustion chamber.

  • PDF

A Study on the Acoustic and Cavity-Tone in a Perforated Through-Tube Muffler (다공관 배기 소음기의 음향 모드와 공동음에 관한 연구)

  • Kwon, Y.P;Lee, D.H.;Oh, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.13-19
    • /
    • 1995
  • The objective of this study is do obtain the relationship between the acoustic mode and cavity tone induced in a perforated tube exhaust muffler. First, the modal frequency for the axisymmetric radial mode and the mode shape have been computed using the impedance model for the perforated tube. Then, experiment has been perfonned for the onset frequencies of the cavity tone for various design parameters and through-flow. The theoretically obtained modal frequencies are well consistent with the measured onset frequencies of the cavity tone, showing that the cavity tone is induced by the axisymmetric radial mode. And it is found that the modal frequency of a perforated tube muffler is much lower than that of a simple expansion chamber.

  • PDF

Active Noise Control In a Cylindrical Cavity (원통형 밀폐공간 내부의 능동소음제어)

  • Lee, Ho-Jun;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2302-2312
    • /
    • 2000
  • An active control of the transmission of noise through an aircraft fuselage is investigated numerically. A cylinder-cavity system was used as a model for this study. The fuselage is modeled as a fi nite, thin shel cylinder with constant thickness. The sound field generated by an exterior monopole source is transmitted into the cavity through the cylinder. Point force actuators on the cylinder are driven by error sensor that is placed in 3D cavity. Modal coupling theory is used to formulate the numerical models and describe the system behavior. Minimization of the acoustic potential energy in the fuselage is carried out as a performance index. Continuous parameter genetic algorithm is used to search the optimal actuator position and both results are compared.

Aeroacoustic Characteristics of Cavity Resonance on Very Low Subsonic Flows (저아음속 유동에 놓여진 개방형 공동의 공력소음 특성)

  • Koh, Sung-Ryong;Moon, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1921-1926
    • /
    • 2004
  • The tone generation mechanism and aeroacoustic characteristics have been investigated for flow over open cavities using direct acoustic numerical simulations. Physically the tone generation mechanism of open cavity is more complicated when flow instabilities are excited by the correlation effects of flow parameters. From non-dimensional parameter studies in very low Mach number range, it is shown that characteristics of cavity resonance inherently involve typical acoustic pattern at each discrete tone frequency, and especially in laminar flow the fundamental tone frequency is determined within flow instability criterion of laminar shear layer as well as cavity geometry, length to depth ratio.

  • PDF

Forced Acoustic Response Analysis of an Acoustic Cavity with a Double Air-gap Resonator for Reducing Passenger Compartment Noises (차실 소음 저감을 위한 복층 에어갭 공명기가 설치된 음향 공동의 강제 음향 응답 해석)

  • Kang, Sang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.163-169
    • /
    • 2005
  • A theoretical formulation on the forced acoustic response of an enclosed cavity having a double air-gap resonator on one of boundary panels of the cavity is developed in the paper. The double gap resonator consists of two air-gaps and two partition sheets as in the author's previous papers. This paper reveals that the double gap resonator reduces the level of a target noise peak by splitting the peak as two small peaks, and that it is more effective when it is designed so that the upper gap thickness is larger than the lower gap thickness under the constraint that the entire gap thickness is fixed as a constant value. Finally, verification experiments show that the theoretical formulation and analysis results are valid by comparing theoretical results with experimental ones.

Predicting Noise inside a Trimmed Cavity Due to Exterior Aero-Acoustic Excitation (외부 유동 소음원에 의한 흡차음재 공간내에서의 소음 예측)

  • Jeong, ChanHee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.569-569
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using CFD Code. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran.

  • PDF

Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity

  • Bagha, Ashok K.;Modak, Subodh V.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • This paper presents and compares three feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity. These are a) control strategy based on direct output feedback (DOFB) b) control strategy based on linear quadratic regulator (LQR) to reduce structural vibrations and c) LQR control strategy with a weighting scheme based on structural-acoustic coupling coefficients. The first two strategies are indirect control strategies in which noise reduction is achieved through active vibration control (AVC), termed as AVC-DOFB and AVC-LQR respectively. The third direct strategy is based on active structural-acoustic control (ASAC). This strategy is an LQR based optimal control strategy in which the coupling between the various structural and the acoustic modes is used to design the controller. The strategy is termed as ASAC-LQR. A numerical model of a 3-D rectangular box cavity with a flexible plate (glued with piezoelectric patches) and with other five surfaces treated rigid is developed using finite element (FE) method. A single pair of collocated piezoelectric patches is used for sensing the vibrations and applying control forces on the structure. A comparison of frequency response function (FRF) of structural nodal acceleration, acoustic nodal pressure, and piezoelectric actuation voltage is carried out. It is found that the AVC-DOFB control strategy gives equal importance to all the modes. The AVC-LQR control strategy tries to consume the control effort to damp all the structural modes. It is seen that the ASAC-LQR control strategy utilizes the control effort more intelligently by adding higher damping to those structural modes that matter more for reducing the interior noise.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF