• Title/Summary/Keyword: acoustic boundary

Search Result 421, Processing Time 0.018 seconds

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

Finite Element Modeling of a Piezoelectric Sensor Embedded in a Fluid-loaded Plate (유체와 접한 판재에 박힌 압전센서의 유한요소 모델링)

  • Kim, Jae-Hwan
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • The sensor response of a piezoelectric transducer embedded in a fluid loaded structure is modeled using a hybrid numerical approach. The structure is excited by an obliquely incident acoustic wave. Finite element modeling in the structure and fluid surrounding the transducer region, is used and a plane wave representation is exploited to match the displacement field at the mathematical boundary. On this boundary, continuity of field derivatives is enforced by using a penalty factor and to further achieve transparency at the mathematical boundary, drilling degrees of freedom (d.o.f.) are introduced to ensure continuity of all derivatives. Numerical results are presented for the sensor response and it is found that the sensor at that location is not only non-intrusive but also sensitive to the characteristic of the structure.

  • PDF

Acoustic Characteristics of Mufflers with an Extended Inlet and Outlet (입출구가 연장된 동심형 소음기의 음향해석)

  • 이준신
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.503-509
    • /
    • 2002
  • Cylindrical chamber silencers with an extended inlet and outlet are extensively used in many application fields to reduce the propagated noise in ducts. The basic attenuation effectiveness in the low frequency region can be explained by the reactive wave action inside the expansion chamber associated with the geometric configurations of the inlet and outlet locations, and the area expansion of the jacket. In this study. an acoustic analysis is carried out for a concentric extended pipe inserted into a simple expansion chamber. An algebraic equation is derived by using the eigenfunction expansion and orthogonality principle in which the acoustic pressures and particle velocities defined on each subdivided surface are expressed by the separable coordinates. By using the proposed analytical method, transmission losses are predicted for several configurations of the concentric extended systems and they agree very well with experimental results.

A Study on the Thermoacoustic Oscillation of an Air Column (기주의 열음향진동에 관한 연구)

  • 권영필;이병호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.253-261
    • /
    • 1987
  • Thermoacoustic oscillation of an air column induced by heated wires is investigated analytically and experimentally. Acoustic power generation from a single heater wire is estimated based on the result of heat transfer analysis and expressed in terms of the efficiency factor indicating the conversion efficiency from heat to acoustic energy. It is shown that the efficiency factor becomes maximum when the wire radius is the order of the coustic boundary layer thickness and the flow velocity is close to the thermal diffusion velocity. Onset condition of the column oscillation is obtained by equating the acoustic power generation at the heater to the power loss due to thermoviscous dissipation at the tube wall and the convection and radiationloss at the open ends of the tube. In estimating the acoustic power generation, the heater is treated as a stretched single wire by correcting the flow velocity to take into account the interactions between adjacent heater wires. Experiment is performed by using a spiral heater of 1mm diameter in an air column of 37mm diameter. The heat input to drive the oscillation is measured and compared with the theoretical prediction. A good agreement is found between the theory and experiment, which is regarded as a substantial verification of the present analysis.

An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines (4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구)

  • Choi, Daesik;Kim, Seokwoo;Yeom, Taeyoung;Lee, Seungbae
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.

Analysis of Relative Contributions of Tonal Noise Sources in Volute Tongue Region of a Centrifugal Fan (원심팬 볼루트 영역내 순음 소음원의 상대적 기여도 분석)

  • Heo, Seung;Kim, Daehwan;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Interaction between the unsteady flow emitted from the blade of the centrifugal fan and the volute tongue region of fan duct is known as the main noise source of the centrifugal fan. In this paper, the relative contributions of the volute tongue region of the centrifugal fan is analyzed to utilize as the foundation data of low noise design. The internal hybrid CAA (Computational Aero-Acoustics) method is used to predict noise radiated from the main noise source. This method is the noise prediction technique using CFD (Computational Fluid Dynamics), Acoustic analogy, and BEM(Boundary Element Method). The relative contributions of the centrifugal fan volute tongue region using the hybrid CAA method show that the region between the cut-off and the scroll has high contribution than the region between the cut-off and the outlet and the hub region of blade has high contribution than the shroud region of blade. These results is utilized as the important data for the development of low noise centrifugal fan.

Variation of Current by the Building of Artificial Upwelling Structure(II) (인공용승구조물 설치에 의한 유동변화(II))

  • Hwang, Suk-Bum;Kim, Dong-Sun;Bae, Sang-Wan;Kheawwongjan, Apitha
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.9-14
    • /
    • 2007
  • To illusσ'ate the variation of current around artificial upwelling structure which is located in the South sea of Korea, current measurements using ADCP (Acoustic Doppler Current Profiler) during neap and spring tides were carried out on 27th July(summer), 14th October and 30th November(Autumn), 2006. Current after the set up of artificial upwelling structure were shown different in the upper and lower layer, the boundary between the upper and lower layer was at $27{\sim}30m$ depth in summer. And the boundary layer was formed structure of three layer in Autumn. Upwelling and downwelling flow were occurred around the seamount, and these vertical flows were connected from surface to bottom The distribution of vertical shear and relative vorticity support the vertical flow around the seamount. The strength of vertical shear was higher and the direction of relative vorticity was anticlockwise (+) around the upwelling area.

  • PDF

Broadband Noise Prediction of the Ice-maker Centrifugal Fan in a Refrigerator Using Hybrid CAA Method and FRPM Technique (복합 CAA 방법과 FRPM 기법을 이용한 냉장고 얼음제조용 원심팬의 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.391-398
    • /
    • 2012
  • In this paper, prediction of centrifugal fan was conducted through combination the hybrid CAA method which was used to predict the fan noise with the FRPM technique which was used to generate the broadband noise source. Firstly, flow field surround the centrifugal fan was computed using the RANS equations and noise source region was deducted from the computed flow field. Then the FRPM technique was applied to the source region for generation of turbulence which satisfies the stochastic features. The noise source of the centrifugal fan was modeled by applying the acoustic analogy to the synthesized flow field from the computed and generated flow fields. Finally, the broadband noise of the centrifugal fan was predicted through combination the modeled noise source with the linear propagation which was realized using the boundary element method. It was confirmed that the proposed technique is efficient to predict the tonal and broadband noises of centrifugal fan through comparison with the measured data.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

On the Source Identification by Using the Sound Intensity Technique in the Radiated Acoustic Field from Complicated Vibro-acoustic Sources (음향 인텐시티 기법을 이용한 복잡한 진동-음향계의 방사 음장에 대한 음원 탐색에 관하여)

  • 강승천;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.708-718
    • /
    • 2002
  • In this paper, the problems in identifying the noise sources by using the sound intensity technique are dealt with for the general radiated near-field from vibro-acoustic sources. For this purpose, a three-dimensional model structure resembling the engine room of a car or heavy equipment is considered. Similar to the practical situations, the model contains many mutually coherent and incoherent noise sources distributed on the complicated surfaces. The sources are located on the narrow, connected, reflecting planes constructed with rigid boxes, of which a small clearance exists between the whole box structure and the reflecting bottom. The acoustic boundary element method is employed to calculate the acoustic intensity at the near-field surfaces and interior spaces. The effects of relative source phases, frequencies, and locations are investigated, from which the results are illustrated by the contour map, vector plot, and energy streamlines. It is clearly observed that the application of sound intensity technique to the reactive or reverberant field, e.g., scanning over the upper engine room as is usually practiced, can yield the detection of fake sources. For the precise result for such a field, the field reactivity should be checked a priori and the proper effort should be directed to reduce or improve the reactivity of sound field.