• 제목/요약/키워드: acoustic

검색결과 8,245건 처리시간 0.038초

난류예혼합화염이 음파의 산란에 미치는 영향에 관한 연구 (The Effect of Turbulent Premixed Flame on the Wave Scattering)

  • 조주형;백승욱
    • 한국연소학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2007
  • Analytical investigation of acoustic wave scattering from turbulent premixed flames was conducted to evaluate the acoustic energy amplification/damping. Such acoustic energy change is attributed to the acoustic velocity jump due to flame's heat release. Small perturbation method up to second order and stochastic analysis were utilized to formulate net acoustic energy and the energy transfer from coherent to incoherent energy. Randomly wrinkled flame surface is responsible for the energy transfer from coherent to incoherent field. Nondimensional parameters that govern net acoustic energy were determined: rms height and correlation length of flame front, incident wave frequency, incidence angle, and temperature ratio. The dependence of net acoustic energy upon these parameters is illustrated by numerical simulations in case of Gaussian statistics of flame front. Total net energy was amplified and the major factors that affect such energy amplification are incidence angle and temperature ratio. Coherent (incoherent) energy is damped (amplified) with rms height and correlation length of flame front.

  • PDF

메탄올 액적 화염의 음향파 가진에 의한 재점화 (Reignition of Methanol Droplet Flames Under Acoustic Pressure Oscillation)

  • 김홍집;손채훈;정석호
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.114-122
    • /
    • 1999
  • Reignition as special cases of acoustic pressure responses of flame are numerically studied by employing methanol droplet flame as a laminar flamelet. Quasi-steady flame responses occur in the range of small amplitude, low frequency oscillation. Reignition phenomena can occur when, by increasing the frequency of large amplitude acoustic pressure, the magnitude of characteristic acoustic time is the same order of that of characteristic reaction time of flames. And more increasing of amplitude of acoustic pressure induces the direct extinction of flame. Flame can sustain its own intensity even under the steady extinction temperature in case of high frequency acoustic oscillation, and this tendency is remarkable with increasing frequency. Reignition regime with respect to amplitude and frequency of acoustic pressure doesn't exist in low frequency($10^2$ Hz, in this study), but broadens with frequency of acoustic pressure.

음향 임피던스 측정을 위한 이중 마이크로폰 기법에 대한 고찰 (Note on the Two-Microphone Methods for the Measurement of Acoustic Impedance)

  • 서성현
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.163-169
    • /
    • 2018
  • The present article discusses about the measurement techniques of acoustic impedance that becomes one of the important acoustic characteristics of various boundaries found inside of propulsion systems. Acoustic characteristics including acoustic impedance and reflection coefficient can be often assessed and estimated by use of the two-microphone method. Theoretical expressions of acoustic impedance and reflection coefficient measured in an impedance tube are presented for both cases with mean flow and without flow, and the practical application of the method through calibration is also provided. The acoustic impedance and the reflection coefficient are related with axial locations of microphones, thermodynamic characteristics of gas inside, and the transfer function between the pressure wave measurements at multiple locations.

음향장이 열전달 과정에 미치는 영향 (The Effect of Acoustic Fields Formed in Heat Transfer Process)

  • 양호동;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1603-1608
    • /
    • 2003
  • The Present Study reported on the experimental and numerical results of heat transfer in the acoustic fields induced by ultrasonic waves. The strong upwards flow called as acoustic streaming was visualized by a particle image velocimetry (P.I.V). in addition, the augmentation of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. Experimental and numerical studies clearly show that acoustic pressure variations are closely related to the augmentation of heat transfer.

  • PDF

초음파 진동 가진시 발생하는 압력과 열전달 촉진과의 상관관계에 관한 연구 (A Study on Correlation Between Acoustic Pressure and Heat Transfer Augmentation via Ultrasonic Vibration)

  • 오율권;양호동
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.22-25
    • /
    • 2004
  • The present paper investigated the correlation between acoustic pressure and heat transfer augmentation in acoustic fields. The acoustic pressure predicted by numerical work and compared with the augmentation ratio of heat transfer coefficient was experimentally measured. Also, particle image velocimetry(PIV) was used for the visualization of velocity vectors and kinetic energy distribution inside liquid region. For the numerical work, SVS programed with Fortran language and based on a coupled FE-BEM was used. Results of the present study, the acoustic pressure is increased by $60\%$ and the largest augmentation of heat transfer about $28\%$ was measured. Finally, the profiles of acoustic pressure is consistent with that of augmentation of heat transfer. It is concluded that a correlation exists between the acoustic pressure and the heat transfer augmentation.

  • PDF

다중 다공판 시스템의 음향임피던스와 계산모델에 관한 고찰 (An Investigation on the Acoustic Impedances and Estimation Models of Multiple Layer Perforated Plate Systems)

  • 이동훈;허성춘;허성욱;김민배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1238-1243
    • /
    • 2002
  • In this study, the validity of the acoustic impedance model and the estimation model by electro-acoustic analogy suggested by Maa for predicting the absorptive performance of multiple layer perforated plate systems is investigated. From the comparison between the experiment and calculation for the absorption performance of double layer perforated plate system, the calculated results of using Rao and Munjal's impedance model and transfer matrix method are closer to the experimental values than those of using Maa's impedance model and electro-acoustic analogy. Therefore, in order to apply the acoustic impedance model and the estimation model by electro-acoustic analogy suggested by Maa to the multiple layer perforated plate systems, it is necessary that the suggested acoustic impedance and estimation models should be re-examined.

  • PDF

위상최적화를 이용한 수중음향렌즈의 설계 (Underwater Acoustic Lens Design Using Topology Optimization)

  • 장강원;;조완호;권휴상;조승현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.555-556
    • /
    • 2014
  • In this paper, topology optimization of two-dimensional acoustic lenses is presented by using the phase field method. The objective of the optimization is to maximize the acoustic pressure at a specified domain inside the acoustic domain for a given frequency, and the constraint is imposed on the amount of the material of the acoustic lens. Topology optimization of two-dimensional acoustic lenses are obtained as the steady state of the phase transition described by the Allen-Cahn equation. The Helmholtz equation modeling the wave propagation is solved by using a finite element method. The effectiveness of the proposed method is verified by applying it for several two-dimensional acoustic lens system design problems.

  • PDF

프로브 마이크로폰을 사용한 귓속형 보청기 성능 검사장치 개발 (ITE Hearing Aid Specification Testing Devise Development using Probe Microphones)

  • 장순석;권유정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1044-1047
    • /
    • 2003
  • An acoustic testing device composed of 2 probe microphones was developed for the electro-acoustic specification testing of the ITE (In-The-Ear) hearing aid (HA). The amplitude ratio and the phase difference between the incident pressure onto the HA microphone and the outward pressure of the HA receiver were measured by the present acoustic system. The microphones were particularly used because of small acoustic cavities where input and output pressures were present. The acoustic wall composed of clay completely blocks the propagation of the sound pressure between the small acoustic cavities. The system has an advantage of structural flexibility for the acoustic testing of different sizes and shapes of ITE-type HAs.

  • PDF

점탄성 복합재가 포함된 다층구조 코팅재의 수중음향성능 해석모델 개발 (Development of Analysis Model for Underwater Acoustic Performance of Multi-Layered Coatings Containing Visco-Elastic Composites)

  • 김재호
    • 한국군사과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.25-39
    • /
    • 2018
  • In this paper, an integrated analysis model for evaluating the underwater acoustic performance of the multilayered acoustic coatings containing visco-elastic composite layers with hollow glass microspheres is described. The model uses the effective medium theory considering the acoustic scattering and resonance effects of the inclusions. Also, the model incorporates the compressive deformation mechanism associated with hydrostatic pressure. The technique developed in this work was used as the acoustic layer design and performance analysis tools for the practical hull coatings and acoustic baffles in Korean next generation submarines.

음향섭동에 의한 후류유동의 제어 (Wake Flow Control by Acoustic Perturbation)

  • 이종춘
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.451-459
    • /
    • 1998
  • THe influence of internal acoustic exitation through a square prism on the turbulent wake flow characteristics was investigated. The intermediate wake region where is about ten times the respective length of the body was experimentally investigated using a conditional phase average technique. At first the static base pressures of square prism and the shedding frequencies have been measured at various internal acoustic exciation frequencies. The experiment were performed under the four cases of internal acoustic excitation frequencies 0Hz 30Hz($St_e$=0.09) 65Hz($St_e$=0.20) 120Hz($St_e$=0.38) And velocity vector fields were presented and discussed. The influence of acoustic exvitation frequencies on the structure of intermediate turbulent wake region is evident. As the internal acoustic frequency increased shedding frequency gradually increased and aerodynamic force decreased. Also it was found that the vortex shedding occurs dratically well and shedding frequency reached nearly the same value as the internal acoustic frequency. but above Strouhal number 0.3 the influence disappeared.

  • PDF