• Title/Summary/Keyword: acidic dykes

Search Result 8, Processing Time 0.017 seconds

Dyke Swarms and Fracture System and their Relative Chronology and Tectonic Implications in the Jukbyeon-Bugu Area, Uljin, East Korea (한반도 동부 울진 죽변-부구 지역 암맥군과 단열계의 상대연령과 지구조적 의미)

  • Kim, Chang-Min;Kim, Jong-Sun;Song, Cheol-Woo;Son, Moon;Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.173-189
    • /
    • 2011
  • Basic to acidic dykes and systematic joints are observed pervasively in the Jukbyeon-Bugu area, Uljin, east Korea. In order to classify the dykes and joints and to determine the relative chronology, their geometries, kinematics, and cross-cutting relationships, and the petrography and geochemistry of dykes are synthetically analyzed. Based on the orientations and cross-cutting relationships of 144 dykes (137 basic and 7 acidic dykes) and 370 systematic joints, three basic dike swarms (M-10, M-80, and M-100), one acidic dyke group (AD), and four joint sets (J-10, J-40, J-80, and J-150) are classified. Some of the J-150 joints reactivated as dextral strike-slip fault are recognized in the field and named as F-340R. According to petrographic, geochemical, and occurrence features in the field, M-80 and M-100 dykes have originated from a co-magma and intruded under the same stress field, even though they have intruded through different passages, preexisting fractures and new fractures created by magmatic pressure, respectively. And the relative chronology of dyke swarms and joint sets in the study area is determined as follows : ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ . And the M-80 (M-100) and M-10 dyke swarms intruded under NNE-SSW and NW-SE trending horizontal minimum stress fields, respectively. According to a synthesis of the results of the previous and this studies, the M-80, M-10, and F-340R are interpreted to have been formed about 64-52 Ma, Eocene~Oligocene, and Miocene, respectively.

SHRIMP U-Pb Ages of Dinosaur and Bird Footprints found in Cretaceous Formation of Saok Island, Jeollanam-do, South Korea (전라남도 사옥도 백악기층에서 발견된 공룡과 새발자국 화석의 SHRIMP U-Pb 연대)

  • Kim, Cheong-Bin;Kim, Uijin;Park, Minsu;Hwang, Koo-Geun;Lee, Keewook
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • The geology of Saok island area in Jeollanam-do can be divided into 4 lithologic types: Jurassic granite, Cretaceous sedimentary rocks, acidic tuff and acidic dikes. In the Saok island area, dinosaur and web-footed bird footprints, arthropod trackway and silicified wood were found recently in the Cretaceous sedimentary rocks which composed of alternating light grey sandstone, shale and mudrock. The fossil-bearing sedimentary rock is overlain by an acidic tuff, and the sedimentary rock and acidic tuff are cut by acidic dykes. In order to constrain the depositional age of the Cretaceous sedimentary rocks in Saok island area, SHRIMP U-Pb zircon ages were determined in the tuffaceous sandstone and overlying acidic tuff. Zircon U-Pb ages of the sandstone and tuff are $83.58{\pm}0.86$ and $79.80{\pm}0.75Ma$, respectively, which belong to the Campanian of the Late Cretaceous. The U-Pb age of the acidic tuff indicates the eruption time of acidic tuff and thus the minimum age of the fossil-bearing sedimentary rocks in this area. Therefore, the formation age of the dinosaur and web-footed bird footprints can be constrained between 83.6 and 79.8 Ma.

Geological Structures of the Limesilicates in the Songgang-ri, Cheongsong-gun, Korea (청송군 송강리 석회규산염암류의 지질구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-151
    • /
    • 2018
  • The Songgang-ri area, Cheongsong-gun, which is located in the Sobaeksan province of Yeongnam Massif near the southwestern boundary of Yeongyang subbasin of Gyeongsang Basin, consists of age unknown metamorphic rocks (banded gneiss, granitic gneiss, limesilicates) and age unknown igneous rock (granite gneiss) which intrudes them. This paper researched the geological structures of the Songgang-ri area from the geometric and kinematic features and the developing sequence of multi-deformed rock structures in the geological outcrops exposed about 170 m along the riverside of Yongjeoncheon in the eastern part of Songgang village, Songgang-ri. In the Songgang-ri geological outcrops are recognized three times (Fn, Fn+1, Fn+2) of folding, three times (Dk-I, Dk-II, Dk-III) intrusion of acidic dykes, one time of faulting, which are different in deformation and intrusion timing each other. These geological structures are at least formed by five times (Dn, Dn+1, Dn+2, Dn+3, Dn+4) of deformation. The Dn deformation is recognized by Fn fold which axial surface is parallel to the regional foliation. The Dn+1 intruded the (E)NE trending Dk-I dyke in the earlier phase and formed the NW trending Fn+1 fold in the later phase under compression of (E)NE-(W)SW direction. There are tight, isoclinal, intrafolial folds, boudinage, ${\sigma}$- or ${\delta}$-type boudins, asymmetric fold, C' shear band as the major deformed rock structures. The Dn+2 intruded the (N)NW trending Dk-II dyke in the earlier phase and formed NE trending Fn+2 fold in the later phase under compression of (N)NW-(S)SE direction. There are open fold and folded boudinage as those. The Dn+2 intruded the Dk-III dyke which cuts the Dk-I and Dk-II dykes and the axial surface of Fn+2 fold. The Dn+3 formed the left-handed reverse oblique-slip fault of NNE trend in which hanging wall moves into the SSE direction. Considering in that such five times of deformation recognized in the Songgang-ri geological outcrops are closely connected to the distribution and geological structure of the constituents in the more regional area as well as Songgang-ri area, the research result is expected to play a great data in clarifying and understanding the geological structure and its development process of the surrounding and boundary constituents of the Yeongnam Massif and Gyeongsang Basin.

Geological Structure around Andong Fault System, Pungcheon-myeon, Andong, Korea (안동시 풍천면 안동단층계 주변의 지질구조)

  • Kang, Ji-Hoon;Lee, Duck-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.83-94
    • /
    • 2008
  • The Pungcheon-myeon, Andong, consists mainly of Precambrian metamorphic rocks, Jurassic igneous rocks, Cretaceous sedimentary rocks (Hasandong, Jinju and Iljik Formations) and Cretaceous igneous rocks (gabbroic rocks, dykes), in which several major faults are developed; Andong fault of ENE trend, which is the boundary fault of the Cretaceous Gyeongsang Basin and the Precambrian-Jurassic basement (Yeongnam Massif), Namhu fault parallel to it, Maebong fault of NNW direction, bow-shaped Gwangdeok fault of ENE direction which is convex toward SSE direction, and Hahoe fault of NNE direction. This paper is researched the geological structures around these major faults by means of the detailed geometric analysis on beddings, joints, faults and drag folds. As a result, a reverse slip faulting of top-to-the SSE movement accompanied with a regional drag folding is recognized from the arrangement of bedding poles measured around the Gwangdeok and Hahoe faults at its northeastern extension, and a zone of Gwangdeok drag fold of 150-300 m width, which is wider at the central and eastern parts of Gwangdeok fault and narrower at its western part and Hahoe fault, is also defined. It indicates that the Hahoe and Gwangdeok faults are a single fault and their movements are coeval unlike the results of earlier reasearchers. And, In this area are recognized two types of faults [(E)NE${\sim}$EW(fault I), WNW${\sim}$NNW (fault II), trending faults] and four types of joints [EW (I), (N)NW (II), NNE (III), NE (IV) trending joints]. These fractures were formed at least through four different events, named as Dn to Dn+3 phases. (1) Dn phase; the formation of joint (I) (Gwangdeok joint) and the intrusion of acidic dykes of EW trend under the compression of EW direction. (2) Dn+1 phase; the formations of joint (II) (Maebong joint), lens-shaped boudinage of acidic dykes, oblique-slip reverse fault (Fault I-Gwangdeok fault) under the compression of (N)NW direction, and the formation of regional zone of Gwangdeok drag fold accompanying the Gwangdeok faulting. (3) Dn+2 phase; those of joint (III), Fault II (Maebong fault) by dextral strike-slip movement of Maebong joint under the compression of NNE direction, and the extension cutting of Dn+1 structures due to the Maebong faulting. (4) Dn+3 phase; the jointing (IV) and the reactivation of Fault II as oblique-slip type with predominant dextral motion which took place under the compression of NE direction. It also suggests that the Maebong fault is not a tear fault deveolped during thrust tectonics of the Andong and Gwangdeok faults but is a post-fault during different tectonic event.

Original Rocks of the Talc Ore Deposits and their Steatitization in the Yesan Area, Choongnam, Korea (충남 예산지구 활석광상의 기원암과 활석화작용)

  • Woo, Young-Kyun;Lee, Dong-Woo
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.548-557
    • /
    • 2001
  • Ultramafic rocks in the Yesan talc ore deposits area are unknown age plutonic rocks which intruded PreCambrian Yoogoo gneiss, and were intruded by Jurassic biotite granite, and Cretaceous acidic and mafic dykes. The ultramafic rocks consist mainly of serpentinite with some amphibolite and talc ore body. The serpentinites are divided 5 rock types (S1${\sim}$S5) on the basis of the developed degree of serpentine phenocrysts and layerings. It seems that the original rocks of the serpentinites were co-magmatic peridotites (dunite and pyroxene peridotite). Main serpentinization from the original rocks was occurred during amphibolite facies regional metamorphism in Choongnam area which Yoogoo gneiss was affected. Main steatitization from the serpentinites was hydrothermal alteration by ascended hydrothermal fluid through crush zones.

  • PDF

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Geology and U-Pb Age in the Eastern Part of Yeongdeok-gun, Gyeongsangbuk-do, Korea (경북 영덕군 동부 일원의 지질과 U-Pb 연령)

  • Kang, Hee-Cheol;Cheon, Youngbeom;Ha, Sangmin;Seo, Kyunghan;Kim, Jong-Sun;Shin, Hyeon Cho;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.153-171
    • /
    • 2018
  • This study focuses on the investigation of geologic distribution and stratigraphy in the eastern part of Yeongdeok-gun, based on Lidar imaging, detailed field survey, microscopic observations, SHRIMP and LA-MC-ICPMS U-Pb age dating, and a new geological map has been created. The stratigraphy of the study area is composed of the Paleoproterozoic metamorphic rocks consisting of banded gneisses of sedimentary origin and schists ($1841.5{\pm}9.6Ma$) of volcanic origin, Triassic Yeongdeok plutonic rocks ($249.1{\pm}2.3Ma$) and Pinkish granites ($242.4{\pm}2.4Ma$), Jurassic Changpo plutonic rocks ($193.2{\pm}1.9Ma{\sim}188.8{\pm}2.0Ma$) and Fine-grained granites ($192.9{\pm}1.7Ma$), Formations [Gyeongjeongdong Fm, Ullyeonsan Fm. (~108 Ma), Donghwachi Fm.] of the Early Cretaceous Gyeongsang Supergroup and acidic volcanic rocks and dykes erupted and intruded in the Late Cretaceous, Miocene intrusive rhyolitic tuffs ($23.1{\pm}0.2Ma{\sim}22.97{\pm}0.13Ma$) and sedimentary rocks of the Yeonghae basin, and the Quaternary sediments. The Triassic Pinkish granites, Jurassic Changpo plutonic rocks and Fine-grained granites are newly defined plutonic rocks in this study. Miocene intrusive rhyolitic tuffs bounded by the Yangsan Fault, which was first discovered in the north of Pohang city, are believed to play an important role in the understanding of the Miocene volcanic activity and the crustal deformation history on the Korean Peninsula. It is confirmed that The NNE-SSW-striking Yangsan Fault penetrating the central part of the study area and branch faults are predominant in the dextral movement and cutting all strata except the Quaternary sediments.

Areal Distribution Ratios of the Constituent Rocks with the Geologic Ages and Rock Types in the Chungbug-Chungnam-Daejeon Areas (충북-충남-대전지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.191-205
    • /
    • 2008
  • In order to use the geologic information data such as industrialization of rock resources, site enlargement and development planning, distributive ratios of rock types and geologic ages were obtained by the ArcGIS 9.2 program, and digital geologic and geographic maps of 1:250,000 scale, in the Chungbug, Chungnam and Daejeon areas, respectively. In the Chungbug area, 64 rock kinds are developed and their geologic ages can be classified into 8 large groups. In the geologic ages, the ratios are decreasing in the order of Jurassic, Precambrian, Age-unknown, Cretaceous, Quaternary, Cambro-Ordovician and Carboniferous-Triassic ages, all of which comprise most ratios of 98.48% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Cretaceous biotite granite, Quaternary alluvium, Great limestone group, Lower phyllite zone and Meta-sandy rock zone of age-unknown Ogcheon group, Triassic Cheongsan granite, Precambrian granitic gneiss of Gyeonggi gneiss complex, Pebble bearing phyllite zone of age-unknown Ogcheon group and biotite gneiss of Sobaegsan metamorphic complex, all of which comprise the prevailing ratio of 84.27% in the area. In the Chungnam area, 35 rock types are developed and their geologic ages can be classified into 6 large groups. In the geologic ages, the ratios are decreasing in the order of Precambrian, Jurassic and Quaternary ages, which occupy the prevailing ratio of 87.55% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Quaternary alluvium, Precambrian granite and granitic gneiss of Gyeonggi gneiss complex, Cretaceous acidic dykes, Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group and Quaternary reclaimed land, which occupy the ratios of 74.28% in the area. In the Daejeon area, 11 rock types are developed and their geologic ages can be classified into 5 large groups. In the ages, the ratios are decreasing in the order of Jurassic, Age-unknown and Quaternary, which occupy most ratios of 93.40% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Quaternary alluvium and Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group, which occupy the prevailing ratios of 91.09% in the area.