• Title/Summary/Keyword: acid tolerance

Search Result 568, Processing Time 0.048 seconds

Mechanism of Fatty Acid Synthase in Drug Tolerance Related to Epithelial-mesenchymal Transition of Breast Cancer

  • Li, Jun-Qin;Xue, Hui;Zhou, Lan;Dong, Li-Hua;Wei, Da-Peng;Li, Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7617-7623
    • /
    • 2014
  • Objective: The mechanism of action of fatty acid synthase (FASN) in drug tolerance of breast cancer cells with epithelial-mesenchymal transition (EMT) features was investigated. Methods: The breast cancer cell line MCF-7-MEK5 with stably occurring EMT and tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$) tolerance was used as the experimental model, whereas MCF-7 acted as the control. Tumour cells were implanted into nude mice for in vivo analysis, and cerulenin was used as a FASN inhibitor. RT-PCR, real-time quantitative PCR and Western blot were employed to detect the expression of FASN, TNFR-1, TNFR-2, Wnt-1, ${\beta}$-catenin and cytC at the RNA and protein levels. Results: Compared with MCF-7, TNFR-1 expression in MCF-7-MEK5 was slightly changed, TNFR-2 was decreased, and FASN, Wnt-1, ${\beta}$-catenin and cytC were increased. The expression of Wnt-1 and ${\beta}$-catenin in MCF-7-MEK5 decreased after cerulenin treatment, whereas cytC expression increased. Conclusions: The important function of FASN in the drug tolerance of breast cancer may be due to the following mechanisms: FASN downregulated TNFR-2 expression through lipid rafts to make the cells less sensitive to TNF-${\alpha}$, and simultaneously activated the Wnt-$1/{\beta}$-catenin signalling pathway. Thus, cytC expression increased, which provided cells with anti-apoptotic capacity and induced drug tolerance.

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

The Conditions Affecting Ethanol Tolerance of Yeast strains in Alcohol Ferwlentation - Study on the Aeration and Lipid Addition (알콜발효에서 효모의 에탄올 내성 조건-통기와 lipid첨가에 대한 연구)

  • 김형진;장형욱유연우
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.172-176
    • /
    • 1989
  • The alcohol fermentation was carried out to study the effect of aeration and unsaturated fatty acids added on the ethanol tolerance of Saccharomyces cerevisiae STV89 and Kluyveromyces fragilis CBS397. The cell growth rate and ethanol production rate was stimulated by aeration and the cell mass production and ethanol production were also substantially improved. With respect to strains, the maximum specific growth rate and overall ethanol productivity of K. fragilis under aerated condition were 6.4 fold and 4.4 fold higher than those of strictly anaerobic condition, although those of S. cerevisiae were increased 1.7 times and 2.3 times by aeration. The addition of ergosterol, linoleic acid and oleic acid also improved the cell growth and ethanol production of S. cerevisiae and K. fragilis. Thus it was found that oxygen and unsaturated fatty acids added played a decisive role on the increase of ethanol tolerance of yeast strains.

  • PDF

An Evaluation of Plant Growth Promoting Activities and Salt Tolerance of Rhizobacteria Isolated from Plants Native to Coastal Sand Dunes (해안사구의 토착식물로부터 분리된 근권세균의 내염능과 식물성장촉진능 평가)

  • Hong, Sun Hwa;Lee, Mi Hyang;Kim, Ji Seul;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.261-267
    • /
    • 2012
  • Coastal sand dunes are important for ecosystems due to the variety of rare species that can be found in this kind of habitat, and the beautiful landscapes they create. For environmental remediation, a potential strategy is phytoremediation using the symbiotic relationship of plants and microbes in the rhizosphere, which has proven ecologically sound, safe, and cost effective. Ninety-five colonies were isolated from the rhizosphere soil (RS) or rhizoplane (RP) of Rorippa islandica, Rumex crispus, Artemisia princeps var. orientalis, Lilium sp Stellaria media, and Gramineae. These colonies were then tested for plant growth promoting activities (PGPAs) such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderphores synthesis ability. In addition, salt tolerance was evaluated at 4% and 8% salt concentrations. It was observed that amongst the test subjects about 50% of the strains had a high resistance to salinity. Many of them could produce indole-3-acetic acid (IAA) IAA (in RS 13.9% and in RP 7.6%), exhibited ACC deaminase activity (55.8% in RS and 36.6% in RP), and could synthesize siderphores (62.7% in RS and 50% in RP). Correlation coefficient analyses were carried out for the three kinds of plant growth promoting abilities (PGPA) and salt tolerance. A positive correlation was found between an ability to synthesize siderphores and ACC deaminase activity (r=0.605, p<0.037). Similarly, positive correlations were noted between salt tolerance and ACC deaminase activity (r=0.762, p<0.004, r=0.771), and salt tolerance and an ability to synthesize siderphores (r=0.771, p<0.003).

Screening and Characterization of Pro biotic Lactic Acid Bacteria Isolated from Korean Fermented Foods

  • Lim, Sung-Mee;Im, Dong-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.178-186
    • /
    • 2009
  • To examine their potential as probiotics, acid and bile tolerance, antibiotics resistance, adhesion capacity to Caco-2 and HT-29, and antibacterial activity, of LAB isolated from Korean fermented foods such. as dongchimi, kimchi, Meju, and doenjang were assayed against foodborne pathogenic bacteria. DC 55, DC 136, DC 222, KC 21, KC 24, KC 34, KC 43, KC 117, MJ 54, MJ 301, SP 33, and SP 170 strains were resistant to acid and bile conditions. In particular, DC 55, DC 136, KC 24, KC 43, and MJ 301 strains were highly resistant to higher than 20 ${\mu}g/ml$ concentrations of vancomycin, streptomycin sulfate, or amoxicillin, whereas, DC 222, KC 21, KC 34, KC 117, MJ 54, and SP 33 strains were susceptible to lower than 2 ${\mu}g/ml$ concentrations of those antibiotics. The adhesion to HT-29 and Caco-2 cells varied with the strains tested in a strain-dependent manner. The highest level of adhesion was observed with DC 55, KC 21, KC 24, and MJ 301 strains, having higher than 50% of adhesion to HT-29 or Caco-2 cells. In addition, Staphylococcus aureus was the most sensitive to KC 21, showing an inhibition of about 70%, and the antibacterial activity of KC 21 against S. aureus resulted most likely from both organic acids and bacteriocin. Based on its phenotypic characteristics and utilization of various sugars, the KC 21 strain was identified as Lactobacillus plantarum.

Virulence genes of Streptococcus mutans and dental caries

  • You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • v.44 no.2
    • /
    • pp.31-36
    • /
    • 2019
  • Streptococcus mutans is one of the important bacteria that forms dental biofilm and cause dental caries. Virulence genes in S. mutans can be classified into the genes involved in bacterial adhesion, extracellular polysaccharide formation, biofilm formation, sugar uptake and metabolism, acid tolerance, and regulation. The genes involved in bacterial adhesion are gbps (gbpA, gbpB, and gbpC) and spaP. The gbp genes encode glucan-binding protein (GBP) A, GBP B, and GBP C. The spaP gene encodes cell surface antigen, SpaP. The genes involved in extracellular polysaccharide formation are gtfs (gtfB, gtfC, and gtfD) and ftf, which encode glycosyltransferase (GTF) B, GTF C, and GTF D and fructosyltransferase, respectively. The genes involved in biofilm formation are smu630, relA, and comDE. The smu630 gene is important for biofilm formation. The relA and comDE genes contribute to quorumsensing and biofilm formation. The genes involved in sugar uptake and metabolism are eno, ldh, and relA. The eno gene encodes bacterial enolase, which catalyzes the formation of phosphoenolpyruvate. The ldh gene encodes lactic acid dehydrogenase. The relA gene contributes to the regulation of the glucose phosphotransferase system. The genes related to acid tolerance are atpD, aguD, brpA, and relA. The atpD gene encodes $F_1F_0$-ATPase, a proton pump that discharges $H^+$ from within the bacterium to the outside. The aguD gene encodes agmatine deiminase system and produces alkali to overcome acid stress. The genes involved in regulation are vicR, brpA, and relA.

Biochemical Characteristics of Lactobacillus acidophilus Isolated from a Breast-Fed Infant (모유 섭취 신생아 유래 Lactobacillus acidophilus의 생리적 특성)

  • Hong, Sung-Moon;So, Byung-Chun;Yoon, Seumg-Won;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • Lactobacillus acidophilus isolated from the feces of a 7-day-old breast-fed infant was characterized to examine the scope of its commercial use. Forty-three Lactobacillus strains, which could grow at pH 5.5, were isolated. From these Lactobacillus isolates, 14 Lactobacillus strains were selected, which demonstrated more than 80% viability and homofermentative lactic fermentation. Finally, 9 L. acidophilus strains (NB 201~NB 209) were identified as candidate strains based upon biochemical properties, carbohydrate utilization, and cellular fatty acid composition. L. acidophilus isolates demonstrated a survival rate of more than 80% when exposed to pH 2.5 for 2 h. In particular, L. acidophilus NB 204 showed a strong acid tolerance, with a 71% survival rate even at pH 2.0. L. acidophilus isolates also manifested high bile acid tolerance; more than 87% of the cells survived on agar containing 1% bile extract, except for L. acidophilus NB 206, which showed a 73% survival rate. All L. acidophilus isolates were confirmed to have proteolytic activity; L. acidophilus NB 204 and NB 209 yielded higher levels of TCA-soluble peptides and free amino acids. The ${\beta}$-galactosidase activity of the L. acidophilus isolates was in the range of 1.97~2.45 units/mL.

  • PDF

Aging and Gasroenterrogi Changes (노화에 따른 위장관 기능의 변화)

  • 조우균
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.219-230
    • /
    • 1993
  • This research aims to study the changes In gastrointestinal function attributed to aging In human. The thresholds for recognition and detection of flavors became elevated and salivary gland acinar cells decreased in the old age. But most esophageal function remained relatively Intact. Although gastric emptying time has been slowed with aging, the total intestinal transit time did not differ. Atropic gastritis due to H. pylori in old man decreased secretion of acid and Intrinsic factor and absorbability of calcium and iron. Pancreatic secretion is droned in older persons. Prevalence of gallstones rised with age. Liver size and portal blood flow decreased significantly with age. Mucosal surface area has been reported to be slightly diminished in the aging man. Glucose transporters decreased and Insulin tolerance Increased. Absorption of aromatic amino acid is diminished with age. Dietary protein In that aging human increased fecal nitrogen excretion. Vitamin A tolerance increased. Vitamin D receptor concentration decreased and resistance to 1,25-(OH)2D3 action increased. Permeability of aging small Intestine Increased. Zinc balance dirt not differ Copper absorption appeared not to be significantly affected by age. Neurotensin secretion decreased thus slowed colonic peristaltic movements and Intestinal mucosal growth.

  • PDF