• Title/Summary/Keyword: acid strength

Search Result 1,668, Processing Time 0.022 seconds

Mechanical Properties of Cellulose/Chitosan and Sericin/Chitosan Blend Films (셀룰로오스/키토산 및 세리신/키토산 복합화필름의 역학특성)

  • Yoon Heung Soo;Lee Eui So;Kim Seung Il;Yoon Ho Gyu;Takahashi Kiyohisa
    • Textile Coloration and Finishing
    • /
    • v.17 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The tensile properties, acetic acid solubility and degree of swelling in distilled water of cellulose/chitosan and sericin/chitosan film blended by mixing chitosan acetic acid solution with cellulose solution or sericin solution were investigated and the effect of crosslinking agent on solubility and degree of swelling were also considered. From the experimental results, the model of intermolecular bond is proposed. Tensile modulus of 100% cellulose film is high but the tensile strength and elongation are low. The elongation of 100% chitosan film is high but tensile modulus and strength is low. But it is possible to make film having same or higher tensile strength and modulus compared to that of 100% cellulose film by mixing cellulose and chitosan or by mixing sericin and chitosan. Chitosan is solved in 5vol % acetic acid solution but cellulose and sericin are not solved. Degree of swelling of chitosan in distilled water is higher than that of cellulose and sericin. Lower than 40wt% chitosan content, the solubility of cellulose/chitosan film in 5vol % acetic acid solution shows lower expected value but higher in case of sericin/chitosan film.

Effect of Formaldehyde on the Water Resistance of MDF Cement Composites

  • Nho, Jun-Seok;Park, Choon-Keun;Park, Sang-Heul
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.278-283
    • /
    • 1999
  • Formaldehyde has widely been used for the cross-linking of polyvinyl alcohol polyvinyl alcohol polymer. The effects of formaldehyde on the water resistance of MDF cement composites were investigated as a function of types of catalyst, base or acid, and the amount of formaldehyde. The acetalization, reaction of OH group of PVA with aldehyde, was ended incompletely under base atmosphere. However, by addition of citric acid, the cross-linking of PVA polymer could be acheved through acetalization of PVA and formaldehyde. The effects of these different patterne according to the types of catalyst on the water resistance of MDF cement were studied by the preparation of PVA films and MDF composites. Thanks to the cross-linking reaction of PVA polymer chains by formaldehyde, the modified PVA films and MDF composites showed a good water-resistant propety. The modified MDF cement composite to which 3 wt% formaldehyde and 1 wt% cirtic acid were added showed 80% of initial flexural strength and good interfacial state between cement grain and polymer matrix. However, 4 wt% formaldehyde deteriorted the processing conditions, microstructures and eventually the flexural strength, causing sharp increase in the viscosity of sample dough during the mixing process. To study the relatins of flexural strength and interface of cement grain and polymer matrix, SEM and MIP measurement were performed.

  • PDF

Reinforcement of Calcium Phosphate-Calcium Sulfate Injectable Bone Substitute Using Citric Acid and Hydroxypropyl-Methyl-Cellulose

  • Thai, Van Viet;Kim, Min-Sung;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.45.1-45.1
    • /
    • 2009
  • In this study, we investigated a calcium phosphate-calcium sulfate injectable bone substitute (IBS) with organic reinforcement of chitosan, citric acid and hydroxypropyl-methyl-cellulose (HPMC). The powder component of IBS consisted of tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dihydrate (CSD). The liquid component was a solution of citric acid and chitosan. The effect of HPMC in terms of setting time, compressive strength and apatite forming ability on this IBS was investigated. The mass content of HPMC in liquid phase was varied in array of 0%, 2%, 3% and 4%. The setting times obtained between 20 and 45 minutes. Compressive strength was achieved over 20 MPa after incubation at 370C and in 100% humidity for 28 days. Porosities were evaluated in relation with compressive strength. Elastic moduli of the 28 days after-incubation IBS were obtained around 4GPa

  • PDF

Effects of Aectic Acid-Water Solvents on the Organic Acid pulping of Wood (아세트산(酸)-물 용매계(溶媒系)에 의한 목재(木材)의 유기산(有機酸) 증해효과(蒸解效果))

  • Lee, Sun-Ho;Jo, Byoung-Muk
    • Journal of Forest and Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.67-80
    • /
    • 1993
  • There are a lot of serious problums associated with conventional pulping processes, such as kraft and sulfite. In order to tackle these difficulties, organic acid pulping of Populus tomentiglandulosa T. Lee and Pinus densiflora S. et Z. have been investigated as on alternative method. The acetic acid cooking of Populus tomentiglandulosa T. Lee achieved good delignification with pulp yields of 55-65% under almost all cooking conditions. In the acetic acid cooking of Pinus densiflora S. et Z., it was not cooked at a low temperature. The strength properties of the acetic acid pulps from Pinus tomentiglandulosa T. Lee showed the optimum with 95% acetic acid concentration at $185^{\circ}C$ maximum cooking temperature for 0.5hr cooking time. The strength properties of the acetic acid pulps from Pinus densiflora S. et Z. displayed excellent tear strength in comparison with those of the other softwoods. In the process of acetic acid cooking, glucose has been removed a little, but other sugars have been eliminated. The elemental compositions and $C_9$ formulas of acetosolv lignins from Populus tomentiglandulosa T. Lee were 63.88% carbon, 5.45% hydrogen and 30.67% oxygen and $C_9H_{9.15}O_{3.24}$ The elemental compositions and $C_9$ formulas of acetosolv lignins from Pinus densiflora S. et Z. were 61.85% carbon, 6.14% hydrogen and 32.01% oxygen and $C_9H_{9.15}O_{3.50}$ The Wt. av. MWT's of the acetosolv lignins from Pinus tomentiglandulosa T. Lee and Pinus densiflora S. et Z. were 731 and 725.

  • PDF

EFFECTS OF PHOSPHORIC ACID CONCENTRATION ON DEPTH OF ETCH AND SHEAR BOND STRENGTH OF ORTHODONTIC BRACKETS TO BOVINE ENAMEL (인산농도가 소의 법랑질에서 부식깊이와 브라켓 전단결합강도에 미치는 영향)

  • Kim, Soo-Cheol;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.25 no.3 s.50
    • /
    • pp.341-353
    • /
    • 1995
  • Previous study had shown the diversities in the propriety for optimal bond strength on the concentration of the etchant. The aim of present study in vitro was to evaluate and compare the shear bond strength of orthodontic brackets to enamel and to measure the depth of etch on the phosphoric acid concentrations. A hundred and seventy six extracted bovine lower centrals were ground to yield flat surfaces and etched by the concentration $0%,\;5%,\;10%,\;20%,\;30%,\;40%,\;50%,\;60%,\;70%,\;80%\;and\;85\%$ of phosphoric acid respectively during 60 seconds. The shear bond strength of orthodontic brackets, the depth of etch and surface roughness of the enamel were measured, and scanning electron microscopic observations on the etched enamel surfaces were carried out. The data obtained from the very experiments were processed and statistically analyzed and evaluated. The gradual increase in the depth of etch to enamel as the accretion of the concentration of the phosphoric acid upto $40-50\%$ and decline henceforth were manifested. The surface roughness showed no correlation with the depth of etch, yet moderate correlation with the shear bond strength of brackets. Scanning electron microscopic investigation revealed that morphological patterns of the etched enamel surfaces for $5\%\;to\;40\%$ of concentrations were even and homogenous, and those for $50\%$ as well as $60\%$ exhibited the overetched and unhomogenous. The shear bond strengths kom $10\%\;to\;60\%$ of concentration showed no statistically significant differences. It was suggested that the shear bond strengths at $5\%\;and\;70\%$ were sufficient to tolerate the force levels of the ordinary orthodontic treatment notwithstanding to be significantly lower than those from $10\%\;to\;60\%$ phosphoric acid solution.

  • PDF

AN EXPERIMENTAL STUDY ON BOND STRENGTH OF GLASSIONOMER CEMENT TO DENTIN SURFACE FOLLOWING ACID TREATMENT (산처리(酸處理)에 따른 상아질(象牙質)에 대한 Glassionomer Cement의 접착강도(接着强度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Won-Seob;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.1
    • /
    • pp.123-129
    • /
    • 1988
  • The purpose of this study was to evaluate the bond strength of glassionomer cement against cut dentin surface which was treated with various surface cleaning agents. 48 freshly extracted human 3rd molars were ground flat through the enamel into the dentin using 600 grit silicone carbide paper under a flow of water. The were divided into four groups by the following cleaning procedure on cut dentin surface; Group I : No surface treatment after grinding with 600 grit silicone carbide paper as control group Group II : Surface treatment with 50% citric acid for 30 seconds. Group III : Surface treatment with 37% phosphoric acid for 30 seconds. Group IV : Surface treatment with 10% poly acrylic acid for 30 seconds. The specimens in 4 groups were immersed in distilled water at $37^{\circ}C$ for 24 hours before testing after cleanising with water-spray and drying with air. Bond strength was measured with Instron Universal Testing Machine (Autograph S-100, Shimadzu, Kyoto, JAPAN). The results were as follows: 1. The bond strengths of group II, III & IV were not seemed to be shown more significant improvement than a group I. 2. The bond strengths in groups which were treated with 50% citric acid, 37% phosphoric acid and 10% polycrylic acid, were ranked 24.70kg/$cm^2$, 22.02kg/$cm^2$ and 31.13kg/$cm^2$, but its difference was not significant, statistically.

  • PDF

Surface Modification of Low Density Polyethylene and Adhesion Characteristics of Low Density Polyethylene/Aluminum Laminate (저밀도 폴리에틸렌의 표면개질과 이를 이용한 저밀도 폴리에틸렌/알루미늄 라미네이트의 접착특성)

  • Jung, B.Y.;Ryu, S.H.
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.195-200
    • /
    • 2001
  • Ultraviolet photografting of acrylic acid onto low density polyethylene was characterized using XPS and contact angle measurement. Effects of surface modification at LDPE and aluminum on LDPE/Al laminate were also investigated. Contact angle decreased significantly at initial state arid tends to level off with increasing UV irradiation time. The improvement of hydrophilicity was due to the presence of acrylic acid on LDPE surface. Graft of acrylic acid onto LDPE was also identified from O1s/C1s ratios in XPS spectrum. Adhesion strength of LDPE-g-AAc/Al laminate showed about 30 times higher than LDPE/A1 system and it could be attributed to the increase of polarity of LDPE surface. Chemical treatment of Al surface using sulfuric acid/sodium dichromate also increased the adhesion strength of LDPE/Al laminate. Adhesion strength of LDPE/Al laminate decreased significantly under acetic acid.

  • PDF

Comparison of Inclusion Complex Formation Capacity of Cyclodextrins with Various Molecules and Characterization of Cyclodextrin-fatty Acid Complex (Cyclodextrin의 Inclusion Complex 형성능과 Fatty Acid와의 Complex 형성조건과 특성)

  • 이용현;정승환박동찬
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.149-158
    • /
    • 1995
  • The capacity of inclusion complex formation between ${\alpha}$-, ${\beta}$-, ${\gamma}$-cyclodextrins(CDs) and various compounds, such as pH indicators, biloslalns, glycoside, amino acid, and fatty acids, was compared. Fatty acid was identified as the most suitable ligand for fractionation of CDs in terms of capacity and selectivity. The effects of complex formation conditions, such as, mixing ratio of CD and fatty acid, pH, ionic strength, and temperature, on the capacity of fatty acrid-CD complex was also investigated. The carbon number of fatty acids was identified as the most significant factor determining the capacity and selectivity of inclusion complex formation of CDs. Capric acid(C10) and palmitic acid(C16) showed high specificity for ${\alpha}$- and ${\beta}$-CDs, respectively. Under the optimal conditions, the molar ratio of complex formed was found to be 1.0:2.6 for ${\alpha}$-CD/capric acid and 1.0:1.9 for ${\beta}$-CD/palmitic acid. X-ray diffraction and infrared spectrum of the formed inclusion complex were analyzed. The changes of enthalpy($\Delta$H) of the inclusion complex formation reaction was evaluated by differential scanning calorimetry, showed that the reaction was endothermic.

  • PDF

A Study on the Acid Degradation Properties of Cellulose Fabrics for Costume Heritage Restoration (유물 복원을 위한 천연 셀룰로오스 직물의 산에 의한 열화 특성 연구)

  • Jeon Cho-Hyun;Kwon Young-Suk;Lee Sang-Joon;Cho Hyun-Hok
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.35-40
    • /
    • 2005
  • Researches to preserve and restore the excavated cellulose fabrics as costume heritages have been carried out. In this study, in order to artificially restore an excavated cellulose fabrics, acid-treated cellulose fabrics were prepared. Three kinds of cellulose fabrics were used for an experiment. Three kinds of cellulose fabrics were treated by the acid aqueous solution for the various strength retention ($100\%,\;80\%,\;60\%,\;40\%,\;20\%$). The fine structure and physical properties of acid treated cellulose fabrics were investigated with various techniques such as wide-angle X-ray diffraction, tensile test, weight loss, shrinkage, SEM etc. Tensile strength and strain of cellulose fabrics decreased with increasing acid treatment time. However, weight loss and shrinkage increasing slightly. The crystal diffraction intensity was not changed. SEM results of acid-treated cellulose fabrics show that the surface was damaged.

Mechanism of strength damage of red clay roadbed by acid rain

  • Guiyuan Xiao;Jian Wang;Le Yin;Guangli Xu;Wei Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.473-480
    • /
    • 2023
  • Acid rain of soils has a significant impact on mechanical properties. An X-ray diffraction test, scanning electron microscope (SEM) test, laser particle size analysis test, and triaxial unconsolidated undrained (UU) test were carried out in red clay soils with different compaction degrees under the effect of different concentrations of acid. The experiments demonstrated that: the dissolution effect of acid rain on colluvium weakened with the increase in the compacting degree under the condition of certain pH values, i.e., the damage to the structure of red clay soil was relatively light, where the number of newly increased pores in the soil decreased and the agglomeration of soil particles increased; for the same compacting degree, the structural gap decreased, and the agglomeration increased with the increase in the pH value (acidity decreases) of the acid rain; the dissolution rate of Si, Al, Fe, and other elemental minerals and cement in red clay soil was found to be higher under the effect of acid rain, in turn destroying the original structure of the soil body and producing a large number of pores. This is macroscopically expressed as the decrease of the soil cohesion and internal friction angle, thereby reducing the shear strength of the soil body.