• Title/Summary/Keyword: acid solution

Search Result 4,938, Processing Time 0.038 seconds

Characterization of Low-Temperature Pyrolysis and Separation of Cr, Cu and As Compounds of CCA-treated Wood (CCA (Chromated Copper Arsenate) 처리 목재의 저온 열분해와 CCA 유효 성분분리 특성)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This study was carried out to separate the heavy toxic metals in eco-building materials by low-temperature pyrolysis, especially arsenic (As) compounds in CCA wood preservative as a solid in char. The pyrolysis was carried out to heat the CCA-treated Hemlock at $280^{\circ}C$, $300^{\circ}C$, $320^{\circ}C$, and $340^{\circ}C$ for 60 mins. Laboratory scale pyrolyzer composed of [preheater$\rightarrow$pyrolyzer$\rightarrow$1st water scrubber$\rightarrow$2nd bubbling flask with 1% $HNO_3$ solution$\rightarrow$vent], and was operated to absorb the volatile metal compound particulates at the primary water scrubber and the secondary nitric acid bubbling flask with cooling condenser of $4^{\circ}C$ under nitrogen stream of 20 mL/min flow rate. And the contents of copper, chromium and arsenic compounds in its pyrolysis such as carbonized CCA treated wood, 1st washing and 2nd washing liquors as well as its raw materials, were determined using ICP-AES. The results are as follows : 1. The yield of char in low-temperature pyrolysis reached about 50 percentage similar to the result of common pyrolytic process. 2. The higher the pyrolytic temperature was, the more the volatiles of CCA, and in particular, the arsenic compounds were to be further more volatile above $320^{\circ}C$, even though the more repetitive and sequential monitorings were necessary. 3. More than 85 percentage of CCA in CCA-treated wood was left in char in such low-temperature pyrolytic condition at $300^{\circ}C$. 4. Washing system for absorption of volatile CCA in this experiment required much more contacting time between volatile gases and water to prevent the loss of CCA compounds, especially the loss of arsenic compound. 5. Therefore, more complete recovery of CCA components in CCA-treated wood required the lower temperature than $320^{\circ}C$, and the longer contacting time of volatile gases and water needed the special washing and recovery system to separate the toxic and volatile arsenic compounds in vent gases.

Application Effect of Food Waste Compost Abundant in NaCl on the Growth and Cationic Balance of Rice Plant in Paddy Soil (NaCl을 다량 함유한 음식물쓰레기 퇴비 시용이 논 토양에서 벼의 생육과 체내 양이온 균형에 미치는 영향)

  • Lee, Sang-Eun;Ahn, Hyun-Jin;Youn, Seung-Kil;Kim, Seak-Min;Jung, Kwang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.100-108
    • /
    • 2000
  • High sodium contents in food-waste compost(FWC) is the greatest limitation to recycle it to arable lands in Korea. The effects of the FWC application to paddy soil on the growth of rice plants, cationic balance in plants, and the sodicity of soil have been studied in pot trials. The effects of FWC application were compared with those of NaCl compound and swine manure compost(SMC) application. $Na_2O$ contents of FWC were high as 2.2%. Immediately after transplanting, rice plants in three treatments showed severe wilting in the order of 40Mg FWC $ha^{-1}$ > NPK+900kg $NaClha^{-1}$ > 20Mg FWC $ha^{-1}$. The high EC value and volatile acid contents of soil solution were regarded as the cause of severe wilting of young rice plants. Increase of NaCl application rate upto $900kgha^{-1}$ showed no significant reduction of dry matter yield at harvesting stage. Regardless of application rates FWC reduced the dry matter yield at harvesting stage, while SMC increased it with increase of application rates upto $40Mgha^{-1}$. In NPK+NaCl and FWC treatments, Na contents and equivalent ratio in plants increased linearly with increase of Na application rates. Between Na and K equivalent ratio negative correlation with high significance was shown. In contrast to much difference of Na, K, and Na/K equivalent ratio among treatments, little difference of Na+K indicated the physiological substitution of Na for K in rice plants. Na use efficiency in NPK+NaCl and FWC treatments showed 12-22%.

  • PDF

EVALUATION OF PERIODONTAL LIGAMENT CELL VIABILITY IN RAT TEETH AFTER FROZEN PRESERVATION USING IN-VIVO MTT ASSAY (급속냉동된 쥐 치아의 in vivo MTT 검색법을 이용한 치주인대세포 활성도 평가)

  • Kim, Jae-Wook;Kim, Eui-Sung;Kim, Jin;Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.3
    • /
    • pp.192-202
    • /
    • 2006
  • The purpose of this study was to examine the viability of PDL cells in rat molars by using in vivo MTT assay, which was used to compare fast cryopreservation group by liquid nitrogen $(-196^{\circ}C)\;with\;4^{\circ}C$ cold preservation group. A total of 74 Sprague-Dawley white female rats of 4 week-old with a body weight of 100 grams were used. The maxillary left and right, first and second molars were extracted as atraumatically as possible under ketamine anesthesia. Ten teeth of each group were divided as six experimental groups depending upon the preservation. Cryopreservation groups were Group 1 (5% DMSO 6% HES in F medium) Group 2 (10% DMSO in F medium), Group 3 (5% DMSO 6% HES in $Viaspan^(R)$). Group 4 (10% DMSO in $Viaspan^(R)$) which were cryopreserved for 1 week and cold preservation groups were Group 5 (F medium) , Group 6 ($Viaspan^(R)$) at $4^{\circ}C$ for 1 week. Immediate extraction group was used as a control. After preservation and thawing, the in vivo MTT assay was processed. Two way ANOVA and Duncan's Multiple Range Test was performed at the 95 % level of confidence, Another 2 teeth of each group were treated as the same manner and frozen sections $10{\mu}m$ thick for microscopic observation. The value of optical density obtained after in vivo MTT analysis was divided by the value of eosin staining for tissue volume standardization. Group 1, 2 had significantly higher optical density than Group 3 and 4 which had the lowest OD value. Group 6 had higher OD value than in Group 5 (P<0.05). Histological findings of periodontal ligament cell, after being stained with MTT solution were consistent with the in vivo MTT assay results. In this study, the groups which were frozen with DMSO as a cryoprotectant and the groups with F medium showed the best results.

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

Effect of SO2 on the Simultaneous Removal of Mercury and NOx over CuCl2-loaded V2O5-WO3/TiO2 SCR Catalysts (CuCl2가 담지된 V2O5-WO3/TiO2 SCR 촉매에 의한 수은 및 NOx 동시 제거에서 SO2의 영향)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2022
  • CuCl2-loaded V2O5-WO3/TiO2 catalyst showed excellent activity in the catalytic oxidation of elemental mercury to oxidized mercury even under SCR condition in the presence of NH3, which is well known to significantly inhibit the oxidation activity of elemental mercury by HCl. Moreover, it was confirmed that, when SO2 was present in the reaction gas together with HCl, excellent elemental mercury oxidation activity was maintained even though CuCl2 supported on the catalyst surface was converted to CuSO4. This is thought to be because not only HCl but also the SO4 component generated on the catalyst surface promotes the oxidation of elemental mercury. However, in the presence of SO2, the total mercury balance before and after the catalytic reaction was not matched, especially as the concentration of SO2 increased. In order to understand the cause of this, further studies are needed to investigate the effect of SO2 in the SnCl2 aqueous solution employed for mercury species analysis and the effect of sulfate ions generated on elemental mercury oxidation. It was confirmed that SO2 also promotes NOx removal activity, which is thought to be because the increase in acid sites by SO4 generated on the catalyst surface by SO2 facilitates NH3 adsorption. The composition change and structure of the components present on the catalyst surface under various reaction conditions were measured by XRD and XRF. These measurement results were presented as a rational explanation for the results that SO2 enhances the oxidation activity of elemental mercury and the NOx removal activity in this catalyst system.

Mineral Phase Transitions of Jarosite Substituted by Oxyanions during the Reductive Dissolution Using Oxalate Solution (옥살레이트 용액을 이용한 환원성 용해 시 산화음이온으로 치환된 자로사이트의 광물 상변화)

  • Lee, Myoungsin;Lee, Dongho;Chun, Herin;Kim, Yeongkyoo;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2021
  • The SO4 in the jarosite structure can be substituted by other oxyanions, and therefore, the transition of jarosite to goethite plays a very important role in controlling the behavior of oxyanions. In this study, the phase change according to the species of the oxyanion in jarosite and the related behavior of the oxyanion was studied by mineralogical and geochemical methods when jarosite, which is coprecipitated with various oxynions, undergoes a phase change by a reductive dissolution. Jarosite substituted by five oxyanions by 5 mol% was used in this study. The mineral phase change induced by reductive dissolution using ammonium oxalate was investigated, and the order of phase transition rate of jarosite to goethite was MoO4-jarosite ≥ SeO4-jarosite ≥ CrO4-jarosite > pure jarosite > SeO3-jarosite > AsO4-jarosite, showing that the transition rates vary depending on the substituted oxyanion. The resultant concentration of the leached Fe was slightly different depending on the type of oxyanion and time but did not show a noticeable difference. The concentration of each oxyanion leached according to the change of the mineral phase showed that the order of concentration of oxyanions was Mo > Se(SeO3) > As > Se(SeO4) > Cr in general, and showed a slight increase with time. This trend was related to the species of oxyanions rather than mineral phase change. The results of this study showed that the phase transition of jarosite to goethite was affected by the species of oxyanions, but this tendency did not affect the concentrations leached oxyanions.

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF