Characterization of Low-Temperature Pyrolysis and Separation of Cr, Cu and As Compounds of CCA-treated Wood

CCA (Chromated Copper Arsenate) 처리 목재의 저온 열분해와 CCA 유효 성분분리 특성

  • Lim, Kie-Pyo (Division of Forest Resources and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Jong-Tak (Division of Forest Resources and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Bum, Jung-Won (Division of Forest Resources and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University)
  • 임기표 (전남대학교 농업생명과학대학 산림자원조경학부) ;
  • 이종탁 (전남대학교 농업생명과학대학 산림자원조경학부) ;
  • 범정원 (전남대학교 농업생명과학대학 산림자원조경학부)
  • Received : 2006.11.02
  • Accepted : 2006.12.20
  • Published : 2007.01.25

Abstract

This study was carried out to separate the heavy toxic metals in eco-building materials by low-temperature pyrolysis, especially arsenic (As) compounds in CCA wood preservative as a solid in char. The pyrolysis was carried out to heat the CCA-treated Hemlock at $280^{\circ}C$, $300^{\circ}C$, $320^{\circ}C$, and $340^{\circ}C$ for 60 mins. Laboratory scale pyrolyzer composed of [preheater$\rightarrow$pyrolyzer$\rightarrow$1st water scrubber$\rightarrow$2nd bubbling flask with 1% $HNO_3$ solution$\rightarrow$vent], and was operated to absorb the volatile metal compound particulates at the primary water scrubber and the secondary nitric acid bubbling flask with cooling condenser of $4^{\circ}C$ under nitrogen stream of 20 mL/min flow rate. And the contents of copper, chromium and arsenic compounds in its pyrolysis such as carbonized CCA treated wood, 1st washing and 2nd washing liquors as well as its raw materials, were determined using ICP-AES. The results are as follows : 1. The yield of char in low-temperature pyrolysis reached about 50 percentage similar to the result of common pyrolytic process. 2. The higher the pyrolytic temperature was, the more the volatiles of CCA, and in particular, the arsenic compounds were to be further more volatile above $320^{\circ}C$, even though the more repetitive and sequential monitorings were necessary. 3. More than 85 percentage of CCA in CCA-treated wood was left in char in such low-temperature pyrolytic condition at $300^{\circ}C$. 4. Washing system for absorption of volatile CCA in this experiment required much more contacting time between volatile gases and water to prevent the loss of CCA compounds, especially the loss of arsenic compound. 5. Therefore, more complete recovery of CCA components in CCA-treated wood required the lower temperature than $320^{\circ}C$, and the longer contacting time of volatile gases and water needed the special washing and recovery system to separate the toxic and volatile arsenic compounds in vent gases.

생태건축에서 토대나 데크 또는 조경용으로 사용되는 CCA처리 목재를 맹독성의 비소(As)를 목탄에 잔류시켜 질산으로 용출시칸 다음, 얻어진 목탄을 에너지 자원으로 재활용하기 위하여 CCA처리된 Hemlock 판재를 $280{\sim}340^{\circ}C$ 사이에서 1시간동안 저온 열 분해처리하여 발생한 휘발성분을 1차 세척수와 2차 $1%HNO_3$ 흡수액으로 처리하여 휘발하는 중금속 성분을 포집하여 전체를 증발농축하여 CCA함량을 ICP-AES로 분석하고, 목탄중의 CCA를 분석한 결과 다음과 같은 결과를 얻었다. 1. 목탄의 수율은 $340^{\circ}C$에서 50%에 이르고, 일반 저온 열분해의 경우와유사한 경향을 보였다. 2. 체계적이고, 반복적인 모니터링이 필요하지만, 온도가 증가할수록 CCA 성분 중 비소성분은 휘발량이 증가하는 경향이었다. 3. $300^{\circ}C$의 저온 열분해에서는 85% 이상의 CCA성분이 목탄 중에 잔류하였다. 4. 보다 정밀하고, 반복된 데이터가 필요하지만, 비소화합물은 $320{\sim}340^{\circ}C$ 이상에서 갑자기 열분해되어 휘발하고, 1차 세척수에 흡수된 것으로 생각된다. 5. 세척수의 흡수량이 손실량보다 적은 것은 세척시스템의 용량이 부족하기 때문에 특수 설계가 필요한 것으로 판단된다. 6. 따라서 저온열분해 방법으로 CCA처리목재 중의 CCA를 보단 완전히 회수 분리하기 위하여서는 $320^{\circ}C$ 이하의 온도에서 보다 작은 목재 입자를 균일하게 가열하는 시스템개발이 필요하고, 보다 완벽한 세척시스템 개발이 필요하였다.

Keywords

References

  1. Green, A. E. S. 2000, Thermal Disposal of CCA-Treated Wood. 2005. http://www. floridacenter.org/publications/green-00-07.pdf)
  2. Helsen, S. L, E. van den Bulck, and J. S. Hery. 1998. Total Recycling of CCA-Treated Wood Waste by Low-Temperature Pyrolysis, Waste Management, 18 : 571-578; 2005, http://people.mech.kuleuven.be/~lieve/publications/1998PI9.pdf https://doi.org/10.1016/S0956-053X(98)00148-2
  3. Helsen, L. and E. van den Buick 2000. Low-Temperature Pyrolysis as a Possible Technique for the Disposal of CCA-Treated Wood Waste: Metal Behaviour, 2005, http.//peoplemech.kuleuven.be/~lieve/publications/2000P03.pdf
  4. Kakitani, T, T Hata, T Kajimoto, and Y. Imamura. 2004. Two possible pathways for the release of arsenic during pyrolysis of chromated copper arsenate(CCA)-treated wood, 2005, http://phys4.harvard.edu/~wilson/arsenic/references/Kakitani_etal2004.pdf
  5. Levan, S. L.. 1984. Chemistry of Fire Retardancy, in 'The Chemistry of Solid Wood', ed. by R. Rowell, American Chemical Society, Washington, D.C., p531-574
  6. Van den Broecke, K., C. Vandecasteele, L.. Helsen, and E. van den Buick 1997. Determination and Characterisation of Copper, Chrome and Arsenic in CCA-treated Wood and its Pyrolysis Residues by Inductively Coupled Plasma Mass Spectrometry, 2005, http://people.mech.kuleuven.ac.be/~lieve/publications/1997P08.pdf
  7. 김윤수, 김규혁, 김영숙. 2004. 목재 보존과학, 전남대출판부, 광주, p186