• Title/Summary/Keyword: acid solution

Search Result 4,945, Processing Time 0.036 seconds

Improvement of Analytical Method for Total Polysaccharides in Aloe vera Gel (알로에 베라(Aloe vera) 겔 중 총 다당체 시험법 개선)

  • Lee, Young-Joo;Kim, Yun-Je;Leem, Dong-Gil;Yoon, Tae-Hyung;Shin, Ji-Eun;Yoon, Chang-Yong;Kim, Jung-Hoon;Park, Mi-Sun;Kang, Tae-Seok;Jeong, Ja-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.271-276
    • /
    • 2012
  • This study intented to standardize the method for total polysaccharide, which is a functional marker for aloe vera gel in Korea. We used four lyophilized raw materials and commercial aloe gel products, certified as Health Functional Food by Korea Food and Drug Administration, including powder, solution, jelly, tablet and capsule, to optimize the analytical condition of dialysis and phenol-sulfuric acid reaction in polysaccharide analysis. The optimal conditions for polysaccharide analysis included 1 L water for dialysis and change 3 times for 24hr against 25 mL prepared sample solution. Validation test showed lower than 5% of coefficient of variation(CV) in intra-, interday validation in lyophilized raw materials and 4 types of commercial products. In inter-person and inter-laboratory validation with 4 persons from 4 different laboratories, CV(%) were 5.50 and 6.64 respectively. The linearity of polysaccharide analysis was assessed using 5 serial concentration of lyophilized raw materials(0.1, 0.2, 0.3, 0.4, 0.5%(w/v)). The results showed $R^2{\geq}0.995$ of high linearity. In the commercial aloe vera gel products, the results of reproductivity showed lower than 7.08% and revealed that the standardized method from this study ensured high precision for polysaccharide analysis.

Mechanism and Activation Parameters $({\Delta}H^{\neq},\;{\Delta}S^{\neq}$ and ${\Delta}V^{\neq})$ of Electron Transfer Reaction Between $Co^{II}CyDTA\;and\;Fe^{III}$CN Complex Ions (Co(II)-CyDTA와 Fe(III)-CN 착이온간의 전자이동반응에서 활성화파라미터 $({\Delta}H^{\neq},\;{\Delta}S^{\neq}$${\Delta}V^{\neq})$ 와 반응메카니즘)

  • Yu Chul Park;Seong Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.273-280
    • /
    • 1989
  • The spectra of the $Co^{II}CyDTA$(CyDTA: cyclohexyldiaminetetraacetic acid) complex have been measured in aqueous solution of pH = 6-13.2. The red shift of the spectrum in the more basic solution was ascribed to the transformation of $CoCyDTA^{2-}$ into $CoCyDTA(OH)^{3-}$. The equilibrium constant, $K_{OH} = [CoCyDTA(OH)^{3-}]/[CoCyDTA^{2-}][OH^-]$ was $75M^{-1}$ at $40^{\circ}C$. The electron transfer reactions of $CoCyDTA^{2-}$ and $CoCyDTA(OH)^{3-}$ with $Fe(CN)_6^{3-}$ have been studied using spectrophotometric technique in the range of pH applied to the determination of equilibrium constant. The pseudo first-order rate constants observed ($k_{obs}$) were not changed upto pH = 10.8, but increased with increasing pH in the range of pH = $10.8{\sim}13.0$. The rate law reduced in the range of pH = 6-13 was $k_{obs} = (k_3[CoCyDTA^{2-}] + k_4[CoCyDTA(OH)^{3-}])/(1+K_1[CoCyDTA^{2-}])$. The rate constants of the reactions (3a) and (3b), $k_3$ and $k_4$ respectively have been determined to be 0.529 and $4.500M^{-1}sec^{-1}$ at $40^{\circ}C$. The activation entropies (147{\pm}1.1JK^{-1} mol^{-1}$ at pH = 10.8) and activation volumes $(6.25cm^3mol^{-1}, pH = 10.8)$ increased with increasing pH, while the activation enthalpy (12.44 ${\pm}$ 0.20 kcal/mole) was independent of pH. Using the pH effect on the rate constants, the activation entropies and the activation volumes, the mechanism of the electron transfer reaction for $Co^{II}-Fe^{III}$ system was discussed.

  • PDF

Quantifying Uncertainty of Calcium Determination in Infant Formula by AAS and ICP-AES (AAS 및 ICP-AES에 의한 조제분유 중 칼슘 함량 분석의 측정불확도 산정)

  • Jun, Jang-Young;Kwak, Byung-Man;Ahn, Jang-Hyuk;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.701-710
    • /
    • 2004
  • Uncertainty was quantified to evaluate calcium determination result in infant formula with AAS (Atomic Absorption Spectrometry) and ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Uncertainty sources in measurand, such as sample weight, final volume of sample, sample dilution and the instrumental result were identified and used as parameters for combined standard uncertainty based on the GUM (Guide to the expression of uncertainty in measurement) and Draft EURACHEM/CITAC Guide. Uncertainty components of each sources in measurand were identified as resolution, reproducibility and stability of chemical balance, standard material purity, standard material molecular weight, standard solution concentration, standard solution dilution factor, sample dilution factor, calibration curve, recovery, instrumental precision, reproducibility, and stability, Each uncertainty components were evaluated by uncertainty types and included to calculate combined uncertainty. The kinds of uncertainty sources and components in the analytical method by AAS and ICP-AES were same except sample dilution factor for AAS. The analytical results and combined standard uncertainties of calcium content were estimated within the certification range $(367{\pm}20\;mg/100g)$ of CRM (Certified Reference Material) and were not significantly different between method by AAS followed by ashing and method by ICP-AES followed by acid digestion as $359.52{\pm}23.61\;mg/100g\;and\;354.75{\pm}16.16\;mg/100g$, respectively. Identifying uncertainty sources related with precision, repeatability, stability, and maintaining proper instrumental conditions as well as personal proficiency was needed to reduce analytical error.

The role of $Na^+-Ca^{2+}$ exchange on calcium activated chloride current in single isolated cardiac myocyte in pulmonary vein of rabbit.

  • Kim, Won-Tae;Lee, Yoon-Jin;Ha, Jeong-Mi;Han Choe;Jang, Yeon-Jin;Park, Chun-Sik;Lee, Chae-Hun m
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.37-37
    • /
    • 2003
  • We have shown the $Ca^{2+}$-activated chloride current is present in cardiac myocyte in rabbit pulmonary vein (Kim et al., 2002). This current amplitude was increased as [N $a^{+}$]$_{i}$ was increased and we suggested this chloride current may be involve in the spontaneous action potential frequency change. Since this current is activated by the increase of intracellular $Ca^{2+}$, we would like to test what is the inducer of the increase of [C $a^{2+}$]$_{i}$ between a L-type $Ca^{2+}$-current or a reverse mode of N $a^{+}$-C $a^{2+}$ exchange current. White rabbit (1.5 kg) was used and anesthetized with Ketamin (100 mg/kg). Pulmonary vein (PV) was isolated and sleeve area between left atrium and PV was dissected. Using collagenase (Worthington 0.7 mg/cc), single cardiac myocytes were isolated. In the presence of 15 mM of N $a^{+}$, three steps of voltage pulses were applied (holding potential : -40 ㎷, -80 ㎷ for 50 msec, 30 ㎷ for 5 msec, 10 ㎷ steps from -70 ㎷ to 60 ㎷). The inward and outward tail current was activated after brief 5 msec prepulse. The outward tail current was blocked by the removal of extracellular chloride substituted by glucuronic acid or by a chloride channel blocker, 5 mM 9-AC. But the inward tail current was still remained even though the amplitude was decreased. The reversal potentials were changed to the direction of the change of chloride equilibrium potential ( $E_{Cl}$ ) but the shift of equilibrium potential was not enough to match to the theoretical equilibrium potential shift. In the presence of L-type $Ca^{2+}$ channel blocker, nifedipine 1 uM, inward tail currents were greatly reduced but the outward current tail currents were still remained. In the presence of N $a^{+}$-C $a^{2+}$ exchange current blocker, 10 uM KB-R7943, the inward and outward tail currents were blocked almost completely. We tried to test the $Ca^{2+}$sensitivity of the chloride current with various [C $a^{2+}$]$_{i}$ in pipette solution from 100 nM to 1 uM but we failed to activate $Ca^{2+}$-activated chloride currents even though the cell became contracted in the presence of 1 uM $Ca^{2+}$. From these results, we could conclude that the increase of [C $a^{2+}$]$_{i}$ to activate the outward $Ca^{2+}$-activated chloride current was mainly induced by the activation of the reverse mode of N $a^{+}$-C $a^{2+}$ exchanger, But for the increase of [C $a^{2+}$]$_{i}$ to activate the inward tail current, L-type $Ca^{2+}$ current may be the major provoking current. Since the cytosolic increase of [C $a^{2+}$]$_{i}$ through pipette solution have failed to activate $Ca^{2+}$-activated chloride current, this chloride current may have very low $Ca^{2+}$ sensitivity or a comparmental increase $Ca^{2+}$ such as in subsarcolemmal space may activate the chloride current. Since there are several reports and models that the increase of $Ca^{2+}$ in subsarcolemmal space would be over several to tens of uM, both possibility may be valid together.uM, both possibility may be valid together.

  • PDF

Reduction and Equilibrium of Vanadium-Diethylenetriamine Pentaacetates at Mercury Electrode in Aqueous Solution (수용액중의 수은전극에서 바나듐-디에틸렌트리아민 펜타아세트산염의 환원 및 평형연구)

  • Ki-Suk Jung;Se Chul Sohn;Young Kyung Ha;Tae Yoon Eom;Sock Sung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 1989
  • Reduction and equilibrium of vanadium-DTPA (DTPA = diethylenetriaminepentaacetic acid, $H_5A$) complexes at mercury electrodes are studied in 0.5M $NaClO_4$ aqueous solution at 3.2 < pH < 10.5 and 25$^{\circ}$C. At 3.2 < pH < 5.9, the reduction reaction is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}HA^{2-}$, while at 5.9 < pH < 10.5 it is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}A^{3-}$. The stability constants of $V{\cdot}HA^{2-}$ and $V{\cdot}A^{3-}$ are found to be $6.46{\times}10^{9}$ and $3.09{\times}10^{14}$, respectively. V(IV)-DTPA undergoes stepwise complexation as $VO^{2+}+H_2A^{3-}=VO{\cdot}HA^{2+}H^{+}$ and $VO{\cdot}HA^{2-}=VO{\cdot}A^{3+}+H$, where acidity constant of $VO{\cdot}HA^{2-}$- is pKa = 7.15. Stability constants of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $1.41{\times}10^{14}$ and $3.80{\times}10^{17}$, respectively. It is detected that $VO^{2+}-DATA$ is reduced irreversibly to $VO^{2-}$ with the transfer coefficient of $\alpha$ = 0.43. At more cathodic overpotential, the reduction is stepwise as V(IV)${\to}$V(III)${\to}$V(II). The first one corresponds to $VO{\cdot}HA^{2-}+e^{-}{\to}VO{\cdot}HA{3+}$ at 3.2 < pH < 7.2 and $VO{\cdot}A^{3-}+e^{-}{\to}VO{\cdot}A^{4-}$ at 7.2 < pH < 10.5. The second is identical to that of V(III). Diffusion coefficients of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $(9.0{\pm}0.3){\times}10^{-6}cm^2/s$ and $(5.9{\pm}0.4){\times}10^{-6}cm^2/ses$, respectively.

  • PDF

A Comparison Study of Alkalinity and Total Carbon Measurements in $CO_2$-rich Water (탄산수의 알칼리도 및 총 탄소 측정방법 비교 연구)

  • Jo, Min-Ki;Chae, Gi-Tak;Koh, Dong-Chan;Yu, Yong-Jae;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Alkalinity and total carbon contents were measured by acid neutralizing titration (ANT), back titration (BT), gravitational weighing (GW), non-dispersive infrared-total carbon (NDIR-TC) methods for assessing precision and accuracy of alkalinity and total carbon concentration in $CO_2$-rich water. Artificial $CO_2$-rich water(ACW: pH 6.3, alkalinity 68.8 meq/L, $HCO_3^-$ 2,235 mg/L) was used for comparing the measurements. When alkalinity measured in 0 hr, percent errors of all measurement were 0~12% and coefficient of variation were less than 4%. As the result of post-hoc analysis after repeated measure analysis of variance (RM-AMOVA), the differences between the pair of methods were not significant (within confidence level of 95%), which indicates that the alkalinity measured by any method could be accurate and precise when it measured just in time of sampling. In addition, alkalinity measured by ANT and NDIR-TC were not change after 24 and 48 hours open to atmosphere, which can be explained by conservative nature of alkalinity although $CO_2$ degas from ACW. On the other hand, alkalinity measured by BT and GW increased after 24 and 48 hours open to atmosphere, which was caused by relatively high concentration of measured total carbon and increasing pH. The comparison between geochemical modeling of $CO_2$ degassing and observed data showed that pH of observed ACW was higher than calculated pH. This can be happen when degassed $CO_2$ does not come out from the solution and/or exist in solution as $CO_{2(g)}$ bubble. In that case, $CO_{2(g)}$ bubble doesn't affect the pH and alkalinity. Thus alkalinity measured by ANT and NDIR-TC could not detect the $CO_2$ bubble although measured alkalinity was similar to the calculated alkalinity. Moreover, total carbon measured by ANT and NDIR-TC could be underestimated. Consequently, it is necessary to compare the alkalinity and total carbon data from various kind of methods and interpret very carefully. This study provide technical information of measurement of dissolve $CO_2$ from $CO_2$-rich water which could be natural analogue of geologic sequestration of $CO_2$.

Influence of Hydrothermal Treatment of Wheat Bran on Phytate-P Content and Performance of Broiler Chickens (수침처리가 밀기울의 피틴태 인 함량과 육계의 생산성에 미치는 영향)

  • Kim, B. H.;Paik, I. K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.229-240
    • /
    • 2003
  • An in vitro test and a broiler feeding trial were conducted to test the effect of hydrothermal treatment of wheat bran on phytate-P degradation and it’s feeding effect on performance of broilers. Hydrothermal treatment of wheat bran was carried out at 55$^{\circ}C$ with pH 5.5 buffer solution. Phytate-P content of wheat bran decreased quadrically as the wheat bran: buffer solution ratio increased from 1:0.5 to 1:5. Phytate-P degradation was not significantly affected by incubation times above 10 min., drying temperature (55$^{\circ}C$, 65$^{\circ}C$ and 75$^{\circ}C$) or pH of the buffer solution (5.5 and 7.0). A feeding trial was conducted with 240 sex separated d-old broiler chickens (Ross$^{\circledR}$). Broilers were randomly housed to 24 cages of 10 birds each. Six cages (3 of each sex) were assigned to 4 treatments: Control-normal level of non-phytate-P (NPP); LP-low NPP treatment which had 0.1% lower NPP than Control; LPWB-LP with wheat bran which provided 475 IU of plant phytase per kg diet; LPHWB-LP with hydrothermally treated wheat bran. Results of the feeding trial showed that broilers in the LP treatment gained significantly less than other treatments in starter period (1-21d) but only male broilers for growing LP gained significantly less than Control in the grower (22-35d) and overall period. There were no significant differences in weight gain among the birds of LPWB, LPHWB and Control. Feed intake during the overall period was not significantly different between LPWB and Control but that of LP was lower than LPHWB and that of LPHWB was lower than Control. Feed/gain ratio was significantly lower in LPHWB and LP than in Control and LPWP. Mortality was highest in LPHWB. Availability of crude fat, crude ash and Ca was significantly lower in LP than other treatments. Availability of P and Zn was higher in LPWB and LPHWB than in Control and LP. Availability of P, Mg and Zn was highest in LPHWP treatment. Excretion of P was significantly lower in low NPP treatments than in Control. Serum Ca level was highest whereas serum P level was lowest in LP. Tibial crude ash content was higher in wheat bran treatments, but lower in LP than Control. However, tibial Ca content was higher in Control and LP than wheat bran treatments. Tibial P content of LP and LPWB was lower than Control. However, tibial content of Fe was highest in LP. It was concluded that wheat bran, a source of plant phytase, could be used in low NPP broiler diets to prevent the depression of performance. Reduction of P excretion can be achieved concomitantly. Hydrothermal treatment of wheat bran was effective in improving utilizability of some minerals but was not effective in improving performance of broilers.

Biochemical Properties of Lactate Dehydrogenase Eye-Specific C4 Isozyme: Lepomis macrochirus and Micropterus salmoides (젖산탈수소효소 eye-specific C4 동위효소의 생화학적 특성: 파랑볼우럭(Lepomis macrochirus)과 큰입우럭(Micropterus salmoides))

  • Yum, Jung-Joo;Ku, Bo-Ra
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.209-219
    • /
    • 2012
  • The properties of lactate dehydrogenase (LDH, EC 1.1.1.27) eye-specific $C_4$ isozyme were studied by polyacrylamide gel electrophoresis, Western blotting, immunoprecipitation, and enzyme kinetics. Furthermore, we proposed the optimal conditions for measuring the activity of LDH eye-specific $C_4$ isozyme. The isozymes were detected in the cytosol of eye tissues from Lepomis macrochirus and Micropterus salmoides and were more similar to the $A_4$ than the $B_4$ isozyme. LDH/CS in the eye tissue of L. macrochirus was increased in September, so the ratio of anaerobic metabolism was high. The electrophoretic patterns of mitochondrial LDH were similar to those of cytosolic LDH in the eye tissues of L. macrochirus and Micropterus salmoides. LDH eye-specific $C_4$ isozyme from eye tissue was purified by preparative native-PAGE. The activities of LDH eye-specific $C_4$ isozymes in L. macrochirus and M. salmoides were reduced at concentrations greater than 0.2 mM and 0.1 mM of pyruvate, respectively. These concentrations remained at 5.2% and 15.8% as a result of the inhibition by 10 mM of pyruvate, so the degree of inhibition was very high. The LDH activities of eye tissues were reduced at concentrations greater than 22 mM and 24 mM of lactate, respectively, in L. macrochirus and M. salmoides. The ${K_m}^{PYR}$ of eye-specific $C_4$ was 0.088 mM in L. macrochirus and it was 0.033 mM in M. salmoides. The activities of cytosolic and mitochondrial eye-specific $C_4$ isozymes were high in ${\alpha}$-ketobutyric acid. Furthermore, the activities of eye tissue and eye-specific $C_4$ isozyme had to be measured with 0.5 mM of pyruvate and a buffer solution of pH 7.5. As a conclusion, the eye-specific $C_4$ isozyme in M. salmoides has a high affinity for pyruvate and exhibits maximum activity at a lower concentration of pyruvate and at higher concentration of lactate than that in L. macrochirus. Therefore, it seems that the energy produced by the LDH eye-specific $C_4$ isozyme in M. salmoides was used at the first stage of predatory behavior.

Changes in Anthocyanin Content of Aronia (Aronia melancocarpa) by Processing Conditions (물리적 처리조건 변화에 따른 아로니아(Aronia melancocarpa) 유래 안토시아닌 함량변화 특성)

  • Kim, Bo Mi;Lee, Kyung Min;Jung, In Chan
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2017
  • The purpose of this study was to obtain basic data for using Aronia as a functional food material. The composition of anthocyanin was characterized and quantitated by LC-MS/MS, HPLC, and UV-VIS spectrophotometer techniques, respectively. The anthocyanin content was analyzed by temperature, time, pH, and the addition of citric acid. The UV-VIS spectrophotometer used for analysis of anthocyanin is less accurate than the LC-MS/MS method used in recent years. In the past, cyanidin-3-Glucoside was reported to be a major anthocyanin that contains Aronia. However, LC-MS/MS analysis in this study confirmed cyanidin-3-galactoside to be the major compound. The anthocyanin content of the Aronia powder began to decrease sharply at a temperature of $65^{\circ}C$ or higher when heated for 24 hours. In an aqueous solution of Aronia, the anthocyanin content was reduced by 50% at $65^{\circ}C$ for 10 hours and decreased by 85% at $85^{\circ}C$ within 10 hours. Above pH 8, the anthocyanin content was reduced by more than 50%. The results of this study will provide useful information to maintain anthocyanin content in the manufacturing process of Aronia. It could also be used to ensure the stability of anthocyanins in similar species of berries.

Characterization of a Psychrophilic Metagenome Esterase EM2L8 and Production of a Chiral Intermediate for Hyperlipemia Drug (메타게놈유래의 저온성 에스터라제 EM2L8의 효소적 특성과 이를 활용한 고지혈증 치료제 키랄소재의 생산)

  • Jung, Ji-Hye;Choi, Yun-Hee;Lee, Jung-Hyun;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.118-124
    • /
    • 2009
  • Esterase EM2L8 gene isolated from deep sea sediment was expressed in Escherichia coli BL21 (DE3) and the esterase activity of the cell-free extract was assayed using p-nitrophenyl butyrate-spectrophotometric method. Its optimum temperature was $40-45^{\circ}C$ and 45% activity of the maximum activity was retained at $15^{\circ}C$. The activation energy at $15-45^{\circ}C$ was calculated to be 4.9 kcal/mol showing that esterase EM2L8 was a typical cold-adapted enzyme. Enzyme activity was maintained for 6 h and 4 weeks at $30^{\circ}C$ and $4^{\circ}C$, respectively. When each ethanol, methanol, and acetone was added to the reaction mixture to 15% concentration, enzyme activity was maintained. In the case of DMSO, enzyme activity was kept up to 40% concentration. (S)-4-Chloro-3-hydroxy butyric acid is a chiral intermediate for the synthesis of Atorvastatin, a hyperlipemia drug. When esterase EM2L8 (40 U) was added to buffer solution (1.2 mL, pH 9.0) containing ethyl-(R,S)-4-chloro-3-hydroxybutyrate (38 mM), it was hydrolyzed into 4-chloro-3-hydroxy butyric acid with a rate of $6.8\;{\mu}mole/h$. The enzyme hydrolyzed (S)-substrate more rapidly than (R)-substrate. When conversion yield was 80%, e.e.s value was 40%. When DMSO was added, hydrolysis rate increased to $10.4\;{\mu}mole/h$. The plots of conversion yield vs e.e.s in the presence or absence of DMSO were almost same, implying that the reaction enantioselectivity was not changed by the addition of DMSO. Taken together, esterase EM2L8 had high activity and stability at low temperatures as well as in various organic solvents/aqueous solutions. These properties suggested that it could be used as a biocatalyst in the synthesis of useful pharmaceuticals.