• Title/Summary/Keyword: acid corrosion

검색결과 500건 처리시간 0.029초

자동차 부품 Tribology용 인산-망간 화성처리에 있어서 첨가제에 따른 화성피막 특성 (Characterization of Tribology for Automobile Part of Manganese Phosphate Solution with Addition agent)

  • 변영민;박종규;서선교;이지환
    • 한국표면공학회지
    • /
    • 제48권2호
    • /
    • pp.56-61
    • /
    • 2015
  • In this study, the wear performance of manganese phosphate coating on SM45C with addition agent of Tartaric acid and Citric acid were investigated. The Surface morphology of manganese phosphate coating was examined by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDS). It is found that Mn, P, Fe, O and C. The crystal structure and thee composition was analysis and determined by using XRD. The XRD results indicated that manganese phosphate coatings are mainly composed of $(Mn,Fe)_5H_2(PO_4)_44H_2O$ and consists of a lot of close packed lump crystalline. Based on the time dependence of morphology and the weight of manganese phosphate coating, it shows that the phosphating process mainly includes three stages: corrosion of the substrate, creation and growth of phosphate crystal nucleus and thickening of manganese phosphate coating. The wear tests were performed in a ball on disc apparatus as per ASTM G-99 Standard. It was showed that the initial wear was quite high followed by low sludge.

Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

  • Yassaghi, Ghazaleh;Davoodnia, Abolghasem;Allameh, Sadegh;Zare-Bidaki, Atefeh;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2724-2730
    • /
    • 2012
  • A new heterogeneous acidic catalyst was successfully prepared by impregnation of silica (Aerosil 300) by an acidic ionic liquid, named 1-(4-sulfonic acid)butylpyridinium hydrogen sulfate [$PYC_4SO_3H$][$HSO_4$], and characterized using FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques. The amount of loaded acidic ionic liquid on Aerosil 300 support was determined by acid-base titration. This new solid acidic supported heterogeneous catalyst exhibits excellent activity in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones by cyclocondensation reaction of 2-aminobenzamide with aromatic aldehydes under solvent-free conditions and the desired products were obtained in very short reaction times with high yields. This catalyst has the advantages of an easy catalyst separation from the reaction medium and lower problems of corrosion. Recycling of the catalyst and avoidance of using harmful organic solvent are other advantages of this simple procedure.

Cu CMP에서의 연마 균일성에 관한 기계적 해석 (Mechanical Analysis on Uniformity in Copper Chemical Mechanical Planarization)

  • 이현섭;박범영;정해도;김형재
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.74-79
    • /
    • 2007
  • Most studies on copper Chemical Mechanical Planarization (CMP) have focused on material removal and its mechanisms. Although many studies have been conducted on the mechanism of Cu CMP, a study on uniformity in Cu CMP is still unknown. Since the aim of CMP is global and local planarization, the approach to various factors related to uniformity in Cu CMP is essential to elucidate the Cu CMP mechanism as well. The main purpose of the experiment reported here was to investigate and mechanically analyze the roles of slurry components in the formation of the uniformity in Cu CMP. In this paper, Cu CMP was performed using citric acid($C_{6}H_{8}O_{7}$), hydrogen peroxide($H_{2}O_{2}$), colloidal silica, and benzotriazole($BTA,\;C_{6}H_{4}N_{3}H$) as a complexing agent, an oxidizer, an abrasive, and a corrosion inhibitor, respectively. All the results of this study showed that within-wafer non-uniformity(WIWNU) of Cu CMP could be controlled by the contents of slurry components.

금속알루미늄의 전기화학적 성질과 응용 (Electrochemical Properties of Metal Aluminum and Its Application)

  • 탁용석;강진욱;최진섭
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.335-342
    • /
    • 2006
  • 금속 알루미늄의 낮은 환원전위는 전기화학적 산화반응을 통하여 알루미늄과 그 표면에 존재하는 산화막의 구조 및 성질의 변화를 일으킨다. 산성용액에서 알루미늄을 전기화학적으로 에칭하여 표면적을 확대시키고 중성의 용액에서 알루미늄 표면에 치밀한 유전체 산화막을 형성시켜 커패시터의 전극으로 이용하고 있다. 저온의 산성용액에서는 양극산화시 나노크기의 다공층 산화막이 형성되며, 나노구조체의 템플레이트로 사용되고 있다. 이와같은 알루미늄의 전기화학적 특성은 알루미늄을 새로운 기능성을 가진 재료로 변화시킴으로서 다양한 분야에서 응용될 것으로 기대된다.

수용액(水溶液)에서 지르코늄이온의 농도분포(濃度分布) (Distribution of Zr(IV) Ion Species in Aqueous Solution)

  • 이만승;이화영
    • 자원리싸이클링
    • /
    • 제20권6호
    • /
    • pp.56-62
    • /
    • 2011
  • 지르코늄은 우수한 내식성과 낮은 중성자 흡수단면적로 인해 원자로에서 구조재로 사용된다. 수용액의 pH에 따른 지르코늄을 함유한 화학종의 농도분포와 용해도의 변화를 구했다. 염산과 질산용액에서 지르코늄이온의 착물형성반응을 고려하여 무기산의 농도에 따른 농도분포를 해석하였다. 질산용액에서 Cyanex272에 의한 지르코늄 추출에 관한 문헌자료를 이용하여 지르코늄과 질산이온간의 Bromley매개변수를 구했다. 이와 같이 구한 매개변수값은 등온추출곡선의 계산이나 하프늄과의 분리인자 예측에 활용될 수 있다.

A Surface Modification of Hastelloy X by Sic Coating and Ion Beam Mixing for Application in Nuclear Hydrogen Production

  • Kim, Jaeun;Park, Jaewon;Kim, Minhwan;Kim, Yongwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.205.2-205.2
    • /
    • 2014
  • The effects of ion beam mixing of a SiC film coated on super alloys (hastelloy X substrates) were studied, aiming at developing highly sustainable materials at above $900^{\circ}C$ in decomposed sulfuric acid gas (SO2/SO3/H2O) channels of a process heat exchanger. The bonding between two dissimilar materials is often problematic, particularly in coating metals with a ceramics protective layer. A strong bonding between SiC and hastelloy X was achieved by mixing the atoms at the interface by an ion-beam: The film was not peeled-off at ${\geq}900^{\circ}C$, confirming excellent adhesion, although the thermal expansion coefficient of hastelloy X is about three times higher than that of SiC. Instead, the SiC film was cracked along the grain boundary of the substrate at above $700^{\circ}C$. At ${\geq}900^{\circ}C$, the film was crystallized forming islands on the substrate so that a considerable part of the substrate surface could be exposed to the corrosive environment. To cover the exposed areas and cracks multiple coating/IBM processes have been developed. An immersion corrosion test in 80% sulfuric acid at $300^{\circ}C$ for 100 h showed that the weight retain rate was gradually increased when increasing the processing time.

  • PDF

텅스텐 미세 전극을 이용한 전해 가공 (Electrochemical Machining Using Tungsten Microelectrode)

  • 류시형;유종선
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.134-140
    • /
    • 2009
  • The feasibility of electrochemical drilling and milling on stainless steel are investigated using tungsten microelectrode with $10{\mu}m$ in diameter. For the development of environmentally friendly and safe electrochemical process, citric acid solution is used as electrolyte. A few hundred nanoseconds duration pulses are applied between the microelectrode and work material for dissolution localization. Tool fracture by Joule heating, micro welding, capillary phenomenon, tool wandering by the generated bubbles are observed and their effects on micro ECM are discussed. Occasionally, complex textures including micro pitting corrosion marks appeared on the hole inner surface. Metal growth is also observed under the weak electric conditions and it hinders further dissolutions for workpiece penetration. By adjusting appropriate pulse and chemical conditions, micro holes of $37{\mu}m$ in diameter with $100{\mu}m$ in depth and 26Jim in diameter with $50{\mu}m$ in depth are drilled on stainless steel 304. Also, micro grooves with $18{\mu}m$ width and complex micro hand pattern are machined by electrochemical milling.

세륨염을 첨가한 황산법 양극산화피막의 오염입자 및 열크랙 거동 (Contamination Particle and Cracking Behavior of the Anodic Oxidation in Sulfuric Acid Containing Cerium Salt)

  • 소종호;윤주영;신재수
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.11-15
    • /
    • 2018
  • The parts of equipment for semiconductor are protected by anodic aluminum oxide film to prevent corrosion. This study investigated contamination particle and cracking behavior of anodic oxidation in sulfuric acid containing cerium salt. The insulating properties of the sample were evaluated by measuring the breakdown voltage. It was confirmed that the breakdown voltage was about 50% higher when the cerium salt was added, and that the breakdown voltage after the heat treatment was 55% and 35% higher at $300^{\circ}C$ and $400^{\circ}C$, respectively. After heating at $300^{\circ}C$ and $400^{\circ}C$, cracks were observed in non cerium and cerium 3mM, and more cracks occur at $400^{\circ}C$ than at $30^{\circ}C$. The amount of contamination particles generated in the plasma is about 45% less than that of non-cerium specimens.

Impact of Wet Etching on the Tribological Performance of 304 Stainless Steel in Hydrogen Compressor Applications

  • Chan-Woo Kim;Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.71-77
    • /
    • 2024
  • Hydrogen has emerged as an eco-friendly and sustainable alternative to fossil fuels. However, the utilization of hydrogen requires high-pressure compression, storage, and transportation, which poses challenges to the durability of compressor components, particularly the diaphragm. This study aims to improve the durability of 304 stainless steel diaphragms in hydrogen compressors by optimizing their surface roughness and corrosion resistance through wet etching. The specimens were prepared by immersing 304 stainless steel in a mixture of sulfuric acid and hydrogen peroxide, followed by etching in hydrochloric acid for various durations. The surface morphology, roughness, and wettability of the etched specimens were characterized using optical microscopy, surface profilometry, and water contact angle measurements. The friction and wear characteristics were evaluated using reciprocating sliding tests. The results showed that increasing the etching time led to the development of micro/nanostructures on the surface, thereby increasing surface roughness and hydrophilicity. The friction coefficient initially decreased with increasing surface roughness owing to the reduced contact area but increased during long-term wear owing to the destruction and delamination of surface protrusions. HCl-30M exhibited the lowest average friction coefficient and a balance between the surface roughness and oxide film formation, resulting in improved wear resistance. These findings highlight the importance of controlling the surface roughness and oxide film formation through etching optimization to obtain a uniform and wear-resistant surface for the enhanced durability of 304 stainless steel diaphragms in hydrogen compressors.

코바강의 탄소첨가량에 따른 강도에 미치는 영향 (The Effect on the Strength According to Carbon Content of Kovar Steel)

  • 최병희;최병기
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.28-33
    • /
    • 2010
  • Ni alloy steel is able to use during long time because of good acid and corrosion resistance. So, it's research has focused on developing the alternative alloy which is economically feasible. Recently, consumption of Kovar steel is gradually increased in field of the jet engine and the gas turbine because of its low thermal expansive characteristics. The specimens of Kovar steel(29%Ni-17%Co) contain 0.00%C, 0.03%C, 0.06%C, 0.10%C and 0.20%C, respectively. Ingots are manufactured by VIM(vacuum induction melting furnace) and then specimens are made by automatic hot rolling after heat treatment. Strength of Kovar steel according to carbon contents is estimated by hardness, tensile and impact test. Hardness of the 0.20%C specimen is more improved approximately 14.4% than one of base metal. Its strength increases 32.4% of a base metal, and its impact energy is also enhance 11.5%.