• 제목/요약/키워드: achievable rate

Search Result 177, Processing Time 0.021 seconds

Achievable Rate Region Bounds and Resource Allocation for Wireless Powered Two Way Relay Networks

  • Di, Xiaofei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.565-581
    • /
    • 2019
  • This paper investigates the wireless powered two way relay network (WPTWRN), where two single-antenna users and one single-antenna relay firstly harvest energy from signals emitted by a multi-antenna power beacon (PB) and then two users exchange information with the help of the relay by using their harvested energies. In order to improve the energy transfer efficiency, energy beamforming at the PB is deployed. For such a network, to explore the performance limit of the presented WPTWRN, an optimization problem is formulated to obtain the achievable rate region bounds by jointly optimizing the time allocation and energy beamforming design. As the optimization problem is non-convex, it is first transformed to be a convex problem by using variable substitutions and semidefinite relaxation (SDR) and then solve it efficiently. It is proved that the proposed method achieves the global optimum. Simulation results show that the achievable rate region of the presented WPTWRN architecture outperforms that of wireless powered one way relay network architecture. Results also show that the relay location has significant impact on achievable rate region of the WPTWRN.

Achievable Power Allocation Interval of Rate-lossless non-SIC NOMA for Asymmetric 2PAM

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제10권2호
    • /
    • pp.1-9
    • /
    • 2021
  • In the Internet-of-Things (IoT) and artificial intelligence (AI), complete implementations are dependent largely on the speed of the fifth generation (5G) networks. However, successive interference cancellation (SIC) in non-orthogonal multiple access (NOMA) of the 5G mobile networks can be still decoding latency and receiver complexity in the conventional SIC NOMA scheme. Thus, in order to reduce latency and complexity of inherent SIC in conventional SIC NOMA schemes, we propose a rate-lossless non-SIC NOMA scheme. First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM non-SIC NOMA, i.e., without SIC. Second, the exact achievable power allocation interval of this rate-lossless non-SIC NOMA scheme is also derived. Then it is shown that over the derived achievable power allocation interval of user-fairness, rate-lossless non-SIC NOMA can be implemented. As a result, the asymmetric 2PAM could be a promising modulation scheme for rate-lossless non-SIC NOMA of 5G networks, under user-fairness.

SUD 수신기의 획득가능한 전송률 분석: 상관 정보원 비직교 다중 접속의 강 채널 사용자에 대한 응용 (Analyses on Achievable Data Rate for Single-User Decoding(SUD) Receiver: with Application to CIS NOMA Strong Channel User)

  • 정규혁
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1003-1010
    • /
    • 2020
  • 본 논문은 표준 SIC NOMA와는 대조적으로, SIC를 수행하지 않는 SUD 수신기의 최대 전송률을 고찰한다. 먼저, 강 채널 사용자에 대해 상관 정보원의 SUD NOMA에 대한 최대 전송률의 폐쇄형 표현식을 유도한다. 다음, 강 채널 사용자에 대해서는, 독립 정보원의 SIC NOMA의 최대 전송률과 비교하여, 상관 정보원의 SUD NOMA의 최대 전송률은 일반적으로 감소하는 것을 보여준다. 그러나, 아주 강한 상관 정보원에 대해서는, 독립 정보원의 SIC NOMA의 최대 전송률과 비교하여, 상관 정보원의 SUD NOMA의 최대 전송률은 아주 우수하다는 것을 입증한다. 추가로, 상관 정보원이 SUD 수신기의 최대 전송률에 미치는 영향을 고찰하기 위해, 다양한 상관 관계 계수에 대해, SUD NOMA의 최대 전송률과 SIC NOMA의 최대 전송률을 폭넓게 비교한다.

Analysis on Achievable Data Rate of Asymmetric 2PAM for NOMA

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.34-41
    • /
    • 2020
  • Nowadays, the advanced smart convergences of the artificial intelligence (AI) and the internet of things (IoT) have been more and more important, in the fifth generation (5G) and beyond 5G (B5G) mobile communication. In 5G and B5G mobile networks, non-orthogonal multiple access (NOMA) has been extensively investigated as one of the most promising multiple access (MA) technologies. In this paper, we investigate the achievable data rate for the asymmetric binary pulse amplitude modulation (2PAM), in non-orthogonal multiple access (NOMA). First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM NOMA. Then it is shown that the achievable data rate of the asymmetric 2PAM NOMA reduces for the stronger channel user over the entire range of power allocation, whereas the achievable data rate of the asymmetric 2PAM NOMA increases for the weaker channel user improves over the power allocation range less than 50%. We also show that the sum rate of the asymmetric 2PAM NOMA is larger than that of the conventional standard 2PAM NOMA, over the power allocation range larger than 25%. In result, the asymmetric 2PAM could be a promising modulation scheme for NOMA of 5G systems, with the proper power allocation.

Achievable Sum Rate of NOMA with Negatively-Correlated Information Sources

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.75-81
    • /
    • 2021
  • As the number of connected smart devices and applications increases explosively, the existing orthogonal multiple access (OMA) techniques have become insufficient to accommodate mobile traffic, such as artificial intelligence (AI) and the internet of things (IoT). Fortunately, non-orthogonal multiple access (NOMA) in the fifth generation (5G) mobile networks has been regarded as a promising solution, owing to increased spectral efficiency and massive connectivity. In this paper, we investigate the achievable data rate for non-orthogonal multiple access (NOMA) with negatively-correlated information sources (CIS). For this, based on the linear transformation of independent random variables (RV), we derive the closed-form expressions for the achievable data rates of NOMA with negatively-CIS. Then it is shown that the achievable data rate of the negatively-CIS NOMA increases for the stronger channel user, whereas the achievable data rate of the negatively-CIS NOMA decreases for the weaker channel user, compared to that of the positively-CIS NOMA for the stronger or weaker channel users, respectively. We also show that the sum rate of the negatively-CIS NOMA is larger than that of the positively-CIS NOMA. As a result, the negatively-CIS could be more efficient than the positively-CIS, when we transmit CIS over 5G NOMA networks.

Achievable Sum Rate Analysis of ZF Receivers in 3D MIMO Systems

  • Li, Xingwang;Li, Lihua;Xie, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1368-1389
    • /
    • 2014
  • Three-dimensional multiple-input multiple-output (3D MIMO) and large-scale MIMO are two promising technologies for upcoming high data rate wireless communications, since the inter-user interference can be reduced by exploiting antenna vertical gain and degree of freedom, respectively. In this paper, we derive the achievable sum rate of 3D MIMO systems employing zero-forcing (ZF) receivers, accounting for log-normal shadowing fading, path-loss and antenna gain. In particular, we consider the prevalent log-normal model and propose a novel closed-form lower bound on the achievable sum rate exploiting elevation features. Using the lower bound as a starting point, we pursue the "large-system" analysis and derive a closed-form expression when the number of antennas grows large for fixed average transmit power and fixed total transmit power schemes. We further model a high-building with several floors. Due to the floor height, different floors correspond to different elevation angles. Therefore, the asymptotic achievable sum rate performances for each floor and the whole building considering the elevation features are analyzed and the effects of tilt angle and user distribution for both horizontal and vertical dimensions are discussed. Finally, the relationship between the achievable sum rate and the number of users is investigated and the optimal number of users to maximize the sum rate performance is determined.

Impact of Correlation on Superposition Coding in NOMA for Interactive Mobile Users in 5G System: Achievable Sum Rate Perspective

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.39-45
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been more commercialized worldwide. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). We present the achievable sum rate of non-orthogonal multiple access (NOMA) with correlated superposition coding (SC). Then this paper investigates the impacts of correlation on the achievable sum rate of correlated SC NOMA. It is shown that the achievable sum rate of correlated SC NOMA is greater than that of standard independent SC NOMA, for the most of the values of the power allocation factor over the meaningful range of the user fairness. In result, correlated SC could be a promising scheme for NOMA.

Uplink Achievable Rate analysis of Massive MIMO Systems in Transmit-correlated Ricean Fading Environments

  • Yixin, Xu;Fulai, Liu;Zixuan, Zhang;Zhenxing, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권1호
    • /
    • pp.261-279
    • /
    • 2023
  • In this article, the uplink achievable rate is investigated for massive multiple-input multiple-output (MIMO) under correlated Ricean fading channel, where each base station (BS) and user are both deployed multiple antennas. Considering the availability of prior knowledge at BS, two different channel estimation approaches are adopted with and without prior knowledge. Based on these channel estimations, a two-layer decoding scheme is adopted with maximum ratio precoding as the first layer decoder and optimal second layer precoding in the second layer. Based on two aforementioned channel estimations and two-layer decoding scheme, the exact closed form expressions for uplink achievable rates are computed with and without prior knowledge, respectively. These derived expressions enable us to analyze the impacts of line-of-sight (LoS) component, two-layer decoding, data transmit power, pilot contamination, and spatially correlated Ricean fading. Then, numerical results illustrate that the system with spatially correlated Ricean fading channel is superior in terms of uplink achievable rate. Besides, it reveals that compared with the single-layer decoding, the two-layer decoding scheme can significantly improve the uplink achievable rate performance.

Achievable Rate Analysis for Opportunistic Non-orthogonal Multiple Access-Based Cooperative Relaying Systems

  • Lee, In-Ho;Lee, Howon
    • Journal of Information Processing Systems
    • /
    • 제13권3호
    • /
    • pp.630-642
    • /
    • 2017
  • In this paper, we propose the opportunistic non-orthogonal multiple access (NOMA)-based cooperative relaying system (CRS) with channel state information (CSI) available at the source, where CSI for the source-to-destination and source-to-relay links is used for opportunistic transmission. Using the CSI, for opportunistic transmission, the source instantaneously chooses between the direct transmission and the cooperative NOMA transmission. We provide an asymptotic expression for the average achievable rate of the opportunistic NOMA-based CRS under Rayleigh fading channels. We verify the asymptotic analysis through Monte Carlo simulations, and compare the average achievable rates of the opportunistic NOMA-based CRS and the conventional one for various channel powers and power allocation coefficients used for NOMA.

Design of Distributed Beamforming for Dual-Hop Multiple-Access Relay Networks

  • Liu, Binyue
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.625-634
    • /
    • 2014
  • This paper studies a dual-hop multiple-access relay network where two independent source nodes transmit information to a common destination node with the aid of multiple single-antenna amplify-and-forward relays. Each relay node is subject to an individual power constraint. We focus on the design of distributed beamforming schemes for the relays to support the transmission rate requirements of the two sources. To this end, we first characterize the achievable rate region for this network via solving a sequence of corner point optimization problems proposed in this paper. We also develop several low-complexity suboptimal schemes in closed form. Two inner bounds of the achievable rate region are theoretically shown to be approximately optimal in two special scenarios. Finally, numerical results demonstrate the effectiveness of our proposed approaches.