DOI QR코드

DOI QR Code

Achievable Power Allocation Interval of Rate-lossless non-SIC NOMA for Asymmetric 2PAM

  • Received : 2021.03.17
  • Accepted : 2021.03.28
  • Published : 2021.06.30

Abstract

In the Internet-of-Things (IoT) and artificial intelligence (AI), complete implementations are dependent largely on the speed of the fifth generation (5G) networks. However, successive interference cancellation (SIC) in non-orthogonal multiple access (NOMA) of the 5G mobile networks can be still decoding latency and receiver complexity in the conventional SIC NOMA scheme. Thus, in order to reduce latency and complexity of inherent SIC in conventional SIC NOMA schemes, we propose a rate-lossless non-SIC NOMA scheme. First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM non-SIC NOMA, i.e., without SIC. Second, the exact achievable power allocation interval of this rate-lossless non-SIC NOMA scheme is also derived. Then it is shown that over the derived achievable power allocation interval of user-fairness, rate-lossless non-SIC NOMA can be implemented. As a result, the asymmetric 2PAM could be a promising modulation scheme for rate-lossless non-SIC NOMA of 5G networks, under user-fairness.

Keywords

References

  1. L. Chettri and R. Bera, "A comprehensive survey on internet of things (IoT) toward 5G wireless systems," IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32, Jan. 2020. DOI: https://doi.org/10.1109/JIOT.2019.2948888
  2. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1-5, 2013. DOI: https://doi.org/10.1109/VTCSpring.2013.6692652
  3. Z. Ding, P. Fan, and H. V. Poor, "Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions," IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6010-6023, Aug. 2016. DOI: https://doi.org/10.1109/TVT.2015.2480766
  4. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, "A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends," IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, Oct. 2017. DOI: https://doi.org/10.1109/JSAC.2017.2725519
  5. S. Kim, "Link adaptation for full duplex systems," International Journal of Advanced Smart Convergence (IJASC), vol. 7, no. 4, pp. 92-100, Dec. 2018. DOI: http://dx.doi.org/10.7236/IJASC.2018.7.4.92
  6. S. Kim, "Switching between spatial modulation and quadrature spatial modulation," International Journal of Advanced Smart Convergence (IJASC), vol. 8, no. 3, pp. 61-68, Sep. 2019. DOI: http://dx.doi.org/10.7236/IJASC.2019.8.3.61
  7. S. Kim, "Transmit antenna selection for quadrature spatial modulation systems with power allocation," International Journal of Advanced Smart Convergence (IJASC), vol. 9, no. 1, pp. 98-108, Mar. 2020. DOI: http://dx.doi.org/10.7236/IJASC.2020.9.1.98
  8. Z. Chen, Z. Ding, X. Dai, and R. Zhang, "An optimization perspective of the superiority of NOMA compared to conventional OMA," IEEE Trans. Signal Process., vol. 65, no. 19, pp. 5191-5202, Oct. 2017. DOI: https://doi.org/10.1109/TSP.2017.2725223
  9. Z. Yong, V. W. S. Wong, and R. Schober, "Stable throughput regions of opportunistic NOMA and cooperative NOMA with full-duplex relaying," IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5059-5075, Aug. 2018. DOI: https://doi.org/10.1109/TWC.2018.2837014
  10. M. Jain, N. Sharma, A. Gupta, D. Rawal, and P. Garg, "Performance analysis of NOMA assisted underwater visible light communication system," IEEE Wireless Commun. Lett., vol. 9, no. 8, pp. 1291-1294, Aug. 2020. DOI: https://doi.org/10.1109/LWC.2020.2988887
  11. Z. Sun, Y. Jing, and X. Yu, "NOMA design with power-outage tradeoff for two-user systems," IEEE Wireless Commun. Lett., vol. 9, no. 8, pp. 1278-1282, Aug. 2020. DOI: https://doi.org/10.1109/LWC.2020.2987992
  12. M. Aldababsa, C. Goztepe, G. K. Kurt, and O. Kucur, "Bit Error Rate for NOMA Network," IEEE Commun. Lett., vol. 24, no. 6, pp. 1188-1191, Jun. 2020. DOI: https://doi.org/10.1109/LCOMM.2020.2981024
  13. A.-A.-A. Boulogeorg, N. D. Chatzidiamantis, and G. K. Karagiannid, "Non-orthogonal multiple access in the presence of phase noise," IEEE Commun. Lett., vol. 24, no. 5, pp. 1133-1137, May. 2020. DOI: https://doi.org/10.1109/LCOMM.2020.2978845
  14. K. Chung, "On power splitting under user-fairness for correlated superposition coding NOMA in 5G system," International Journal of Advanced Smart Convergence (IJASC), vol. 9, no. 2, pp. 68-75, Jun. 2020. DOI: http://dx.doi.org/10.7236/IJASC.2020.9.2.68
  15. K. Chung, "On power calculation for first and second strong channel users in M-user NOMA system," International Journal of Advanced Smart Convergence (IJASC), vol. 9, no. 3, pp. 49-58, Sept. 2020. DOI: http://dx.doi.org/10.7236/IJASC.2020.9.3.49
  16. K. Chung, "Analysis on achievable data rate of asymmetric 2PAM for NOMA," International Journal of Advanced Smart Convergence (IJASC), vol. 9, no. 4, pp. 34-41, Dec. 2020. DOI: http://dx.doi.org/10.7236/IJASC.2020.9.4.34
  17. K. Chung, "NOMA for correlated information sources in 5G Systems," IEEE Commun. Lett., vol. 25, no. 2, pp. 422-426, Feb. 2021. DOI: https://doi.org/10.1109/LCOMM.2020.3027726
  18. K. Chung, "Achievable sum rate of NOMA with negatively-correlated Information Sources," International Journal of Advanced Smart Convergence (IJASC), vol. 10, no. 1, pp. 75-81, Mar. 2021. DOI: http://dx.doi.org/10.7236/IJASC.2021.3.1.75