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This paper studies a dual-hop multiple-access relay 
network where two independent source nodes transmit 
information to a common destination node with the aid of 
multiple single-antenna amplify-and-forward relays. Each 
relay node is subject to an individual power constraint. We 
focus on the design of distributed beamforming schemes 
for the relays to support the transmission rate 
requirements of the two sources. To this end, we first 
characterize the achievable rate region for this network 
via solving a sequence of corner point optimization 
problems proposed in this paper. We also develop several 
low-complexity suboptimal schemes in closed form. Two 
inner bounds of the achievable rate region are 
theoretically shown to be approximately optimal in two 
special scenarios. Finally, numerical results demonstrate 
the effectiveness of our proposed approaches. 
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I. Introduction 

It has been widely confirmed that amplify-and-forward (AF) 
relay systems increase spatial diversity and reliability of 
wireless communication systems — for example, [1] and [2]. 
From a practical standpoint, AF relaying is an interesting 
cooperative relaying strategy because the implementation 
complexity and cost of relaying — always an issue in 
designing cooperative networks — is minimal. 

The AF-based distributed beamforming problem was first 
studied for one-way dual-hop relay networks with a single 
source-destination pair [3]–[7]. The goal is to efficiently 
compute the optimal beamforming vectors in terms of 
maximum end-to-end transmission rate under either sum or 
individual relay power constraints. Later, the problem was 
extended to layered relay networks — for example, [8] and [9]. 
However, only suboptimal schemes were derived. 

The design of AF-based distributed beamforming has also 
attracted great attention in the recent research community for 
two-way relay systems. Unlike in the one-way case, the source 
nodes also perform as destinations in the case of two-way relay 
networks. The achievable rate region of a two-way relay 
network with distributed beamforming was studied in [10]. For 
such a network, a signal-to-noise ratio (SNR) balancing 
approach was investigated in [11]. The authors in [11] 
proposed an alternating optimization algorithm to iteratively 
compute a joint source power control and distributed relay 
beamforming scheme. The goal is to maximize the smaller 
SNR of the two communication links. In [12], the authors 
proposed a joint source power control and distributed relay 
beamforming scheme for a two-way relay network with 
multiple source-destination pairs. The aim is to minimize the 
relay power dissipation while the output SNR at each 
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destination node is kept above a desired value. 
The aforementioned schemes have all been built upon the 

assumption that each destination node only decodes the 
message from one desired source node and treats the signals 
from the other sources as noise. Similar to the peer-to-peer 
relay networks, the dual-hop multiple-access relay networks 
(MARNs) also play an important role in wireless relaying 
systems. In such networks, multiple source nodes transmit 
information to a common destination node simultaneously. 
Dual-hop MARNs can be regarded as a system model for an 
up-link transmission from multiple mobile terminals to a 
common base station or for a down-link transmission from 
multiple databases to a common user; where in both cases 
multiple AF relays are applied to help the transmission. Hence, 
it is worthwhile to mention the pioneer work done in 
characterizing the achievable rate region of a dual-hop MARN 
[13]. The complete achievable rate region for a dual-hop 
MARN was fully characterized in [13] where the AF-based 
distributed beamforming is employed and the relays are under 
a sum power constraint. The standard weighted sum-rate 
maximization (WSRM) problems (used in [13]) were used to 
solve the optimal beamforming vectors. However, this 
approach is not appropriate when it comes to an individual 
relay power constraints scenario because the WSRM problem 
is hard to solve — as shown in [14]. By applying such an 
approach, only the maximum individual rates and sum rates 
were obtained in some special scenarios. 

In this study, we investigate the distributed beamforming 
problem for a dual-hop MARN where multiple AF relays, as 
considered in [14], are subjected to individual power 
constraints. The goal is to find appropriate beamforming 
vectors such that desired transmission rates of two independent 
sources can be achieved. Equivalently, we can alternatively 
fully characterize the complete achievable rate region of this 
network. Rather than formulating it into a sequence of WSRM 
problems, as observed in the previous works of [13] and [14], 
we propose a corner point (CP) optimization formulation. Then 
it is shown that the complete achievable rate region can be 
derived via solving a sequence of CP optimization problems, 
which yields a prohibitively high computational complexity for 
large networks. To deal with this issue, we focus on designing 
low-complexity beamforming vectors, with which two inner 
bounds of the complete achievable rate region can then be 
obtained. We show theoretically that the inner bounds are 
approximate to the complete achievable rate region in two 
special scenarios of interest. Finally, numerical results are 
shown to verify the effectiveness of the approaches.  

Notation. The expectation operation is denoted by [ ]E . A 
complex Gaussian distribution with mean   and variance 

2  

is denoted by 2( , ).   A diagonal matrix with xi at the 

diagonal position is denoted by 1diag( ) diag( , ... , ).nx xx  
The Euclidean norm of a vector x is denoted by 2|| .||x  The 
trace of X is denoted by tr(X). A logarithm in base 2 is 
denoted by log(). We use cl() to denote the closure of the 
convex hull of a set. Let max ( ) X  represent the maximum 
eigenvalue of a matrix X, and let vec(X) denote its 
corresponding eigenvector. 

II. System Model 

We study the dual-hop MARN that is depicted in Fig. 1. Two 

independent sources (S1 and S2) simultaneously communicate 

to a common destination node (D) with the aid of a layer of AF 

relays (denoted by  1, ... ,n ). Similar to works [13] and 

[14], the direct path between the sources and the destination is 

neglected due to large channel fading. We consider a flat-

fading channel scenario; thus, all channel coefficients are 

assumed to be constant during a transmission. The destination 

node serves as a center node, which collects all channel state 

information using the training-based channel estimation 

technique proposed in [15]. Before each round of transmission, 

the destination node designs an appropriate beamforming 

vector and distributes it to the relays via feed-back channels. 
In the first hop, the sources broadcast the signals to the relays 

simultaneously. We assume that the propagation delays from 
the source nodes to the relays are derived and all the relays 
receive signals in different frequency bands with equal 
bandwidth. The source node transmits the same signal on all 
frequency bands using different up-frequency converters. To 
achieve synchronization for the first hop, the source nodes 
control the start time of the transmission in each frequency 
band according to the delay information. As a result, the signal 
received at any given relay can be synchronized. After 
frequency down-conversion, the signal received at any given 
relay is obtained by 

 
1 21, 2, for ,k k S k S ky f x f x z k            (1) 

where 
iSx  is the information symbol of source node Si with 

 

Fig. 1. Dual-hop MARN with two sources. 
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power 
2[| | ] ,

i iS Sx PE  for 1, 2;i   f1,k and f2,k denote the 
complex-valued channel coefficients from S1 and S2 to relay k, 

respectively; and zk denotes the complex Gaussian noise, with 
zero mean and unit variance, at relay k. Since the AF-based 

distributed beamforming scheme is employed, relay k simply 

amplifies and retransmits the received signal; that is,  

 ,k k kx y                (2) 

where k is the complex-valued scaling factor chosen at relay k 
and ()* represents the conjugate of a complex number.  

We consider the scenario where each relay k has an 
individual power budget; thus, the transmit signal at relay k 
should satisfy the following constraint: 

 2 2
,ma, x[| | ] | | ,kk kRkx PP  E            (3) 

where 
1 2

2 2
, 1, 2,| | | | 1R k k S k SP f P f P    is the received 

signal power of relay k and | |  represents the absolute value of 
a complex number. 

We use 1[ ,..., ]T
n α  to represent a beamforming 

vector and use { : satisfies (3)}  α α  to denote the set of 
all beamforming vectors satisfying the individual relay power 
constraints. Given a beamforming vector α, the signal received 
at a destination node can be expressed as 

 
1 21 2diag( )( ) ,T

D S S Dy x x z   h α f f z       (4) 

where 1 1,1 1, ,, ,
T

nf f   f   2 2,1 2, ,, ,
T

nf f   f   and 

 1, , .
T

nz zz   Here,  1, ,
T

nh hh   denotes the channel 

vector from relays to the destination node and zD is the 

complex Gaussian noise, with zero mean and unit variance, at 

the destination node. Here, we also assume that perfect 

synchronization is achieved. The synchronization can be 

achieved in a similar manner as in the first hop with the only 

difference being that all the relays can transmit on the same 

frequency band. 
From (4), given a beamforming vector α, the dual-hop 

MARN can be considered as a conventional Gaussian 
multiple-access channel (MAC), where 

11diag( )T
Sxh α f  and 

22diag( )T
Sxh α f  are the information symbols of the two 

equivalent sources and diag( )T
Dz h α z  is the equivalent 

Gaussian noise. To distinguish them, we denote the former as 
MAC(α). The capacity region of a Gaussian MAC can be 
found in [16]. To achieve this region, the source nodes employ 
independent Gaussian codebooks, each consisting of 2 inR  
codewords. The random variables 

1Sx  and 
2
,Sx  used to 

generate the codebooks are drawn according to 
1

(0, )SP  
and 

2
,(0, )SP  respectively. According to the capacity 

region of the Gaussian MAC, the achievable rate region of 
MAC(α) is denoted by ( ),α  which is given as follows: 

1 2

1 2

2 2
1 2

1 2 1 22 2
2 2

2 2
1 2

1 2 2

†

2

†

† †

† †

†

|
( , ) : ,

| |
,

1 1

| | | |
            

|

 ,
1

S S

S S

P P
R R R R

P P
R R

                  
        

α Hf α Hf

α H α H

α Hf α Hf

α H

ǁ ǁ ǁ ǁ

ǁ ǁ

 



 

(5) 
where 

†( )  represents the Hermitian transpose, diag( ),H h  
and ( ) log(1 )x x   represents the Gaussian capacity 
formula with SNR equal to x. For brevity of notation, we 
denote the union of achievable rate sets s( ’)α by 

({ }) ( ). αα α   By time-sharing technique, the 
complete achievable rate region of the network is given 
by cl( ({ })).α  To fully characterize cl( ({ })),α  a 
commonly used method is to solve a sequence of WSRM 
problems — as can be observed in [13] and [14]. However, it 
has been shown in [14] that the WSRM problem is hard to 
solve when it comes to individual relay power constraints. So, 
we shall propose an alternative approach to address this 
problem. 

III. Characterization of Achievable Rate Region 

In this section, we show that the problem of computing 
cl( ({ }))α  can be formulated as a sequence of non-convex 
CP optimization problems. Then we solve the CP optimization 
problem via a semi-definite programming (SDP)–based 
approach. 

1. Problem Formulation 

We consider two special achievable rate pairs in ( )α  
corresponding to a specific beamforming vector , .α α  
Using the successive cancellation decoding scheme with the 
message of S1 first decoded, the rate pair 
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can be achieved, which is referred to as the “upper-diagonal” 
corner point of ( )α . 

Reversing the decoding order, the rate pair 
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can be achieved, which is referred to as the “lower-diagonal” 
corner point of ( )α . 

According to (6), we set up a problem of maximizing the 
transmission rate up

2 ( )R α  of S2 under the individual relay 
power constraints (3) and the constraint that the transmission 
rate up

2 ( )R α  of S1 is no less than a desired value r1. Similarly, 
according to (7), we set up a problem of maximizing the 
transmission rate low

1 ( )R α  of S1 under the individual relay 
power constraints (3) and the constraint that the transmission 
rate 

low
2 (R α)  of S2 is no less than a desired value r2. 

Combining the fact that log() is an increasing function, the 
above-mentioned maximization problems can be unified 
formulated as follows, which are referred to as CP optimization 
problems: 

 

† † †
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       (8) 

where , {1,2},i j  ,i j  2 1jr
j    is the equivalent SNR 

constraint, diag(0, ... ,1, ... ,0)k I  is a diagonal matrix with 
the kth element equal to 1, and ,max ,max , .k k R kP P   We 
denote the optimal solution of the above problem as low

opt 2( )rα  
and up

opt 1( ),rα  for i = 1 and 2, respectively. It is clear that 
low low
1 opt( (0))R α  and up up

2 opt( (0))R α  represent the maximum 
individual transmission rates of S1 and S2 respectively. 
Furthermore, the maximum possible value of rj can be 
determined via solving the following problem: 

 

† † †

† † † †

2

,m

†

†
ax

  ,

      

max
1

s.t. ,

j

i

j j S
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P
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α

α Hf f H α

α Hf f H α α HH α

α I α 

      (9) 

Denote the maximum objective value of the above problem by 

,max .j  It follows that given any beamforming vector α, 
,α  the achievable rate up

1 ( )R α  does not exceed 1,maxr  
and the achievable rate low

2 ( )R α  does not exceed 2,max ,r  
where ,max ,maxlog(1 )i ir    for i = 1, 2. 

Therefore, each value of ri in the interval ,max[0, ]ir  leads to 
a CP optimization problem. Then, we can obtain a sequence of 
optimal solutions up

opt 1( )rα and low
opt 2( )rα by solving the 

corresponding CP optimization problems. For simplicity of 

notation, we denote the union of the rate sets up
opt 1( ( ’) s)rα  

and low
opt 2( ( s)’)rα  as follows: 

1 1,max

2 ,max2

up
1 [0, ] opt 1

low
[0, ] opt2 2

({ }) ( ( ))

and

({ }) ( ( )).

r r

r r

r r

r r









α

α





 

 

          (10) 

It is obvious that 1 2cl( ({ }) ({ }))r r  is a subset of 
cl( ({ })).α  Then, we show an interesting result that the two 
rate sets are indeed equivalent. 

Theorem 1. For any beamforming vector α0 that satisfies the 

individual relay power constraints in (3), the corresponding 

achievable rate region 0( )α  of 0MAC( )α  is a subset of 
up low
opt 1 opt 2cl( ( ( )) ( ( ))),r rα α  where up

1 1 0( )r R α  and 
low

2 2 0( ).r R α  
Proof. To prove the theorem, it is sufficient to show that the 

upper- and lower-diagonal corner points of 0( )α  are 
contained in up

opt 1( ( ))rα  and low
opt 2( ( ))rα , respectively.  

On one hand, by setting up
1 1 0( ),r R α  α0 is apparently a 

feasible solution of (8) since α0 also satisfies the power 

constraints. So, the optimal solution up
opt 1( )rα  should always 

exist and should satisfy the first SNR constraint of (8); that is,  

 up up up
1 opt 1 1 1 0( ( )) ( )R r r R α α .          (11) 

On the other hand, 
up
2 ( )R α  is maximized at up

opt 1( )rα ; that is, 

 up up up
2 opt 1 2 0( ( )) ( )R r Rα α .            (12) 

Therefore, it follows that the achievable rate pair 
up u

1 02
p

0( ( ), ( ))R Rα α  is included in up
opt 1( ( )).rα  Following 

the same argument, we claim that the following relationship 
holds: 

 low low low
1 opt 2 1 0( ( )) ( )R r Rα α            (13) 

and 

 low low low
2 opt 2 2 2 0( ( )) ( )R r r R α α .        (14) 

As a result, it follows that the achievable rate pair 
low low
1 0 02( ( ), ( ))R Rα α  is included in low

2opt( ( ))rα . By   

time-sharing technique, all rate pairs in 
up low
opt 1 opt 2cl( ( ( )) ( ( )))r rα α   are achievable and thus the 

rate set 0( )α  is included in up low
opt 1 opt 2cl( ( ( )) ( ( )))r rα α  .  

Then, we complete the proof.                       □ 

From Theorem 1, it follows that both ({ })α  and 

cl( ({ }))α  are included in 1 2cl( ({ }) ({ }))r r  . Then, 

we conclude the procedure of fully characterization of 

cl( ({ }))α  as follows: The interval ,max[0, ]ir  is first 

quantized into sufficiently fine grids. Then, for each grid point, 

a CP optimization problem is formulated and solved. With the 

obtained solutions, the complete achievable rate region 
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cl( ({ }))α  of a dual-hop AF relaying MARN under 

individual relay power constraints can be fully characterized.  
From the above procedure, the finer the quantized grid, the 

more precise the complete achievable rate region is 
characterized; however, as a consequence, computational 
complexity is increased. Thus, there exists a trade-off between 
precision and computational complexity. For practical 
implementation, all the obtained schemes are stored in a look-
up table in a control center. Before the transmission, the control 
center should search the table to decide the appropriate scheme 
that achieves the desirable rate pair of the sources and 
distributes the scheme to all the relays. 

We end this subsection with a brief discussion on the design 
of distributed beamforming for MARNs with a general 
number of source nodes. Assume that there are m source nodes. 
With the successive cancellation decoding scheme, each rate 
set has m! (roughly speaking, exponentially many) corner 
points with respect to different decoding orders. Similar to the 
two-source case, we shall establish an optimization problem for 
each corner point to fully characterize the achievable rate 
region. Specifically, we maximize the transmission rate of the 
source node for which the message is last decoded, subject to 
the m–1 rate constraints similar to that of (8) and to the 
individual relay power constraints. Thus, the problem formula 
becomes much more complicated. Besides, the search 
operation for each corner point becomes an (m–1) dimensional 
one, which appears prohibitively expensive in terms of 
computational complexity. For simplicity of discussion, we 
only take the two-source case as an illustration.  

2. SDP-Based Approach 

Recall that the WSRM problem for a two-way relay network 
is solved via a bisection technique, with each step (of the 
bisection technique) involving a SDP when the nonreciprocal 
channels scenario and the individual relay power constraints 
are considered. Although the CP optimization problem 
proposed in this study is similar to the WSRM problem studied 
in [10], we apply several different transformation tricks to 
reformulate the CP problem as one SDP problem; thus, 
avoiding the bisection procedure. Since the optimization 
problems in (9) can be viewed as special cases of (8), the 
detailed computational procedure of (9) is skipped. 

Problem (8) is then first reformulated as 
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        (15) 

where † † †( )
ij i i SP A Hf f H HH  is positive definite. 

Using the substitutions 1/v u  and / ,uβ α  we have 
the following equivalent problem: 
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Then, substituting the first constraint into the remaining 
constraints of (16), we have 
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Using the substitution † ,X ββ  (17) can be recast as 
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It is clear that the last rank-one constraint is non-convex. By 
applying the semi-definite relaxation technique [17], the above 
problem can be relaxed to  
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 (19) 

which is a convex semi-definite program; thus, it can be 
efficiently solved via standard interior-point methods within 
polynomial time. Compared with the bisection search–based 
method proposed in [10], the proposed approach is much more 
efficient. 

Generally speaking, the resulting optimal solution Xopt may 
not be of rank one. Interestingly, we show in the following 
proposition that the rank relaxation is tight when the first 
constraint of (19) is inactive.  

Proposition 1. Suppose that problem (19) is feasible and that 
the optimal solution Xopt of (19) is attained with the rate 
constraint being inactive. Then it can be shown that  
rank(Xopt) = 1. 

The proof is given in the appendix. 
Proposition 1 provides a sufficient condition to determine 

whether the resultant solution is of rank one. In other cases, we 
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shall first compute the rank of the optimal solution Xopt. If it is 
of rank one, then the optimal solution of (17) can be easily 
obtained via rank-one decomposition of Xopt, that is, 

†
opt ptopt o β βX ; otherwise, good rank-one approximate 

solutions can be derived via various techniques developed in 
[18]. Interestingly enough, we find that Xopt is always of rank 
one in all our numerical simulations. Then, the optimal solution 
of (8) is given by  

 opt opt opt ,vα β              (20) 

where † †
opt opt opt1v  β HH β . 

Nevertheless, we provide a randomization-based efficient 
approach to construct rank-one solutions once the rank of Xopt 
is greater than one, for the sake of completion. We use Xopt to 
randomly generate a set of candidate vectors { }lβ . The kth 
element of lβ  is chosen as ,

opt, e ,l kj
k

X  where opt,kX  
denotes the kth diagonal element of Xopt and ,l k  is uniformly 
distributed over the interval  0, 2π .  As can be seen, lβ  
always satisfies the individual relay power constraints in (17).  
The best solution among all the candidates is chosen such that 
the violation of the first constraint of (17) is minimized; that is, 

† †

† †
opt

†

†arg in 1m .j

i
l

l j l S

l i i l S
j

j P
P



       






β

β Hf f H β
β Hf f H ββ  

(21) 

IV. Low-Complexity Suboptimal Schemes 

In this section, we focus on designing low-complexity 
suboptimal schemes. Using these schemes, we can 
approximately characterize the complete achievable rate region 
cl( ({ }))α  with finitely many ( s’)α in two special 
scenarios. It is clear in this case that the implementation cost 
can be significantly reduced. 

From (4), the received sum noise at the destination node 
consists of two parts. One is the relay propagation noise 
denoted by 

 ( ) diag( )T
Rz α h α z .           (22) 

The other is the local noise zD introduced by the destination 
node. Comparing the powers of ( )Rz α  and zD, we consider 
the following two special scenarios. 

Scenario 1. The power of zD is relatively large compared 
with that of ( ).Rz α  In this scenario, the relays can be 
regarded as multiple transmit antennas of the source nodes. 
Intuitively, the relays shall apply co-phase transmission — with 
all relays using the maximum allowable powers to combat the 
local destination noise zD. Thus, the beamforming vector is 

chosen as  

 1,1 1 1,( ) ( )
1,1 1,max ,max[ e , ... , e ]n nj f h j f h T

n    α ,   (23) 

or 

 2,1 1 2 ,( ) ( )
1,2 1,max ,max[ e , ... , e ] ,n nj f h j f h T

n    α    (24) 

where ,( )
, ,e i k kj f h

i k k i k kf h f h    for 1, 2.i   

It is clear that 2
1 1,cl( ( ))i i α   is an inner bound of the 

complete achievable rate region cl( ({ }))α . Our goal is to 

show that the low-complexity inner bound 2
1 1,cl( ( ))i i α   is 

an approximate characterization of cl( ({ }))α  in this 

scenario. 
To be rigorous, we consider the case when the power of zD is 

relatively large compared with that of ( )Rz α  if the condition 

 
2 2

1,( )  for 1,2R i Dz z i        
E α E       (25) 

is satisfied; that is, 
2†

1, 2
1 for 1,2.i i α H  

Due to the lack of closed-form solutions of (8), it is difficult 

to directly compare 2
1 1,cl( ( ))i i α   with cl( ({ })).α  

Hence, we first propose an outer bound of cl( ({ }))α , which 

is used as a benchmark to evaluate the performance of 
2

1 1,cl( ( ))i i α  . Given any beamforming vector α, ,α  

the following rate set, denoted by out
1 ( )α , is an outer bound 

of ( )α :   




1

1 2

2

2 2

1 2 1 1
† †

2

† †

2

2 2

1 2 1 2

( , ) : ( ), ( ),   

                   ( ) .

S S

S S

R R R P R P

R R P P

 

  

α Hf α Hf

α Hf α Hf

 


(26) 

Denoting the union of the above outer bounds by 
out out

1 1({ }) ( ), αα α   it then follows that 

 out
1cl( ({ })) cl( ({ }))α α  .          (27) 

From (23), (24), and (26) it follows that for any beamforming 

vector α, ,α out
1 ( ),α  is included in the rate set out

1  

given as 




1 2

1 2

2 2† †
1 2 1 1,1 1 2 1,2

2 2† †
1 2 1,1 1 1,2

2

2

( , ) : ( ), ( ),   

                   ( ) ,

S S

S S

R R R P R P

R R P P

 

  

α Hf α Hf

α Hf α Hf

 


(28) 

which further implies that  

 out out
1 1cl( ({ })) cl( ({ })) . α α          (29) 

Therefore, to achieve the desired goal, it suffices to show that 
2

1 1,cl( ( ))i i α   is approximate to out
1  under the condition 

given in (25). Considering the maximum achievable individual 

rates of 2
1 1,cl( ( ))i i α  , we have 
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α Hf

α H

α Hf

α Hf

     (30) 

where (a) follows from the condition (25). It follows that the 

maximum achievable individual rate of 2
1 1,cl( ( ))i i α   is at 

most one bit/channel use smaller than that of the outer bound 
out

1 .  

Scenario 2. The power of zD is relatively small compared 

with that of ( )Rz α . In this scenario, the relays can be regarded 

as multiple-receive antennas of the destination node. It is well 

known that maximal-ratio combining [19] is the optimal linear 

combining technique that achieves the largest diversity gain in 

this scenario. 
To be specific, for individual rates we choose the 

beamforming vector as the solution of 

 

2†

2†

2

2†
,max

max   ,

s.t. ,    

iS

k k

i P

k  

α Hf

α H

α I α 

      (31) 

It is clear that the objective function is a Rayleigh-Ritz quotient 
[20]. Consequently, the optimal solution can be easily obtained 
in closed-form and is given as follows: 

  1 ,max†
2,

,

,  min{ , } for 1, 2;k k
i i i i

i k

h
c c k i

f


   α H f   

(32) 
where ci is chosen such that the relay power constraints are 
satisfied. The corresponding maximum objective value is 

2

2
.

ii SPf  For sum rate, we choose the beamforming vector as 
the solution of  

 

1 2

2 2† †
1 2

2†

2

2†
,max

max   ,

s.t.   ,  

S S

k k

P P

k



  

α Hf α Hf

α H

α I α 

         (33) 

It is clear that the objective function is also a Rayleigh-Ritz 
quotient. Hence, the optimal solution can be easily obtained as 

 ,max† 1
2,3 3 3( ) ,  min{ , }k k

k

h
c c k

f

  α H f  ,   (34) 

where c3 is chosen such that the relay power constraints are 

satisfied, 
1 2

† †
1 1 1 2 2[ , , ] vec( )n S Sf f P P  f f f f f and the 

maximum objective value is 
1 2

† †
max 1 1 2 2( ).S SP P f f f f  Note 

that the maximum eigenvalue of a rank-two semi-definite 

matrix can be analytically derived, as shown in [14]; that is, 

 
1 2

2
† †

max 1 1 2 2( ) ,
2S S

a a b
P P  

 f f f f        (35) 

where 

1 2

2 2

1 22 2S Sa P P f f  

and 

1 2

22 2 †
1 2 1 22 2

4 ( )S Sb P P f f f f . 

Then, f can be easily derived via solving a system 
of homogeneous linearity equations. 

It is clear that 
3

1 2,cl( ( ))i i α   is also an inner bound of the 

complete achievable rate region cl( ({ })).α  Our goal is to 

show that the low-complexity inner bound 3
1 2,cl( ( ))i i α   is 

an approximate characterization of  cl( ({ }))α in this scenario. 
To be rigorous, we consider the case when the power of zD is 

relatively small compared with that of ( )Rz α  if the condition 

 
2 2

2,( ) [ ] for 1,2,3R i Dz z i     
E α E       (36) 

is satisfied, that is, 
2†

2, 2
1 for 1,2,3.i i α H  

Due to the same reason as the previous scenario, we shall 
propose an outer bound of cl( ({ }))α  as a benchmark to 
evaluate the performance of 

3
1 2,cl( ( )).i i α   Given any 

beamforming vector α, ,α  the following rate set 
out
2 ( )α  is an outer bound of ( )α : 

 21

2 2† †
1

1 2 1 22 2† †

2 2

2
( , ) : , ,  

S SP P
R R R R

    
                

α Hf α Hf

α H α H
   

 1 2

2 2† †
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2

.
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α Hf α Hf

α H
       (37) 

Denoting the union of the above outer bounds by 
out out
2 2({ }) ( ) αα α   it then follows that 

 out
2cl( ({ })) cl( ({ }))α α  .        (38) 

Then, from (31)–(34), it follows that for any beamforming 

vector α, ,α  out
2 ( )α  is included in the rate set out

2  

given as 
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    (39) 

which further implies that  
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 out out
2 2cl( ({ })) cl( ({ })) . α α          (40) 

Finally, to achieve the desired goal, it suffices to show that 
3

1 2,cl( ( ))i i α   is approximate to out
2  under the condition 

given in (36). Considering the maximum achievable individual 
rates of 3

1 2,cl( ( ))i i α  , we have 
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      (41) 

where (a) follows from the condition (36) and (b) follows from 
(32). It follows that the maximum achievable individual rate of 

3
1 2,cl( ( ))i i α   is at most half a bit/channel use smaller than 

that of the outer bound out
2 . Considering the maximum 

achievable sum rate of the inner bound 3
1 2,cl( ( ))i i α  , we 

have 

 

1 2

1 2

1 2

1 2

1 2

1

2 2† †
2,3 2,3

2†
2,3 2

2 2† †
( )

2,3 2,3

2†
2,3 2

( )

2

† †
max 1 1 2 2( )

log 1
1

log 1

log 1 1,

S S

a
S S

b

S S

P P
R

P

R

P P

P






 
  
   
 
  
  
 

  

α Hf α Hf

α H

α Hf α H

f

f

H

f

α

f f
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    (42) 

where (a) follows from the condition (36) and (b) follows from 

(34). It follows that the maximum achievable sum rate of the 

inner bound 3
1 2,cl( ( ))i i α   is also at most half a bit/channel 

use smaller than that of the outer bound out
2 . Combining  

(41) and (42), we can conclude that 3
1 2,cl( ( ))i i α   is 

approximate to out
2  and thus, to cl( ({ }))α  in this 

scenario. 

V. Simulation Results 

In this section, we illustrate several numerical results to show 
the performance of the proposed schemes. Let’s consider a 
dual-hop MARN with three AF relays. The network setup is 
given as follows. The powers of the two sources 

1SP  and 
2SP  

are both equal to 10. Each relay node has an equal individual 
power budget ,max 0kP P , for {1,2,3}k  . The randomly 
generated channel vectors are given as follows: 

1 0.045 1.283 0.432 0.221 , 0.0[ 7, 7 1.2 ]76 ,Tj j j   f  

 

Fig. 2. Achievable rate regions vs. individual relay power budget 
P0. 
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Example 1. In the first example, three achievable rate 
regions of the dual-hop MARN are depicted in Fig. 2 versus 
different individual relay power budgets. We apply the 
approach proposed in section III. Each CP optimization 
problem (8) is solved via the SDP-based approach. 
Interestingly enough, we find that the solutions of the 
relaxed semi-definite programs are of rank one in all 
circumstances. Thus, we can obtain the exact optimal 
solution of the CP optimization problem, which leads to the 
full characterization of the achievable rate regions. We 
indicate all the optimized upper- and lower-diagonal corner 
points as stars in Fig. 2. 

Example 2. In the second example, we show the 
approximate characterization of the complete achievable rate 
region in the two special scenarios considered in section IV. In 
Fig. 3, we show the inner bound 2

1 1,cl( ( ))i i α   and the 
two outer bounds for P0=1. It is easy to check that condition 
(25) is satisfied. From Fig. 3, we can see that the inner bound 

2
1 1,cl( ( ))i i α   performs close to the outer bound out

1 ,  
which coincides with the theoretical result that 

2
1 1,cl( ( ))i i α   is a close approximation to the complete 

achievable rate region in this scenario. In Fig. 4, we show the 
inner bound 3

1 2,cl( ( ))i i α   and the two outer bounds for 
P0=100. It is easy to check that condition (36) is satisfied. From 
Fig. 4, we can see that the inner bound  3

1 2,cl( ( ))i i α   
performs close to the outer bound out

2 , which coincides with 
the theoretical result that 3

1 2,cl( ( ))i i α  is a close 
approximation to the complete achievable rate region in this  
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Fig. 3. Comparison of inner and outer bounds in scenario 1. 
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Fig. 4. Comparison of inner and outer bounds in scenario 2. 
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scenario. 

VI. Conclusion 

In this paper, we investigated the achievable rate region of a 
dual-hop MARN with multiple AF relays under individual 
power constraints. The complete achievable rate region can be 
fully characterized via solving a sequence of corner point 
optimization problems. To reduce the computational 
complexity, we also proposed several analytical suboptimal 
beamforming vectors to approximately characterize the 
complete achievable rate region in two special scenarios of 
interest. Overall, this work provides a theoretical basis for 
designing practical AF-based distributed relay beamforming.  

Appendices 

Proof of Proposition 1. 

It is readily verified that (19) satisfies Slater’s constraint 
qualification, which implies that the strong duality holds and 
that the primal and dual optimal solutions must satisfy the KKT 
conditions [21]. Let 0,opt ,  ,opt ,k  for k   and Yopt be 
the optimal dual variables associated with the constraints in 
(19). A part of the KKT conditions relevant to the proof are 
listed below:  

opt 0,opt

2

,opt ,max 0,o
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† † †

† † †
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Y Hf f H Hf f H

I HH Hf f H


(43) 

 opt opt ,Y X 0                   (44) 

 opt opt 0,opt ,opt0, 0, 0, 0.k  X Y           (45) 

Note that if the first constraint is inactive, then by strong 
duality 0,opt 0.   Moreover, at least one ,optk  must be 

positive in (45); otherwise, one can achieve a larger objective 
value by scaling up Xopt. It implies that 

2

,opt ,max
†( )k k k

k

 


 I HH


 is a full-rank matrix. Then, by 

substituting (43) into (44), we have 
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  (46) 

Thus it follows that: 
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  (47) 

Since opt X 0  in practice, it is sufficient to show that 

optrank( ) 1X .                                   □ 
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