• Title/Summary/Keyword: acetic fermentation

Search Result 627, Processing Time 0.031 seconds

Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria

  • Choi, Suk-Ho
    • Journal of Animal Science and Technology
    • /
    • v.58 no.3
    • /
    • pp.10.1-10.10
    • /
    • 2016
  • Background: Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Methods: Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Results: Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Conclusion: Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869

  • Jeong, Kyung Hun;Israr, Beenish;Shoemaker, Sharon P.;Mills, David A.;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1182-1189
    • /
    • 2016
  • Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite derepressed phenotype that has ability to consume fermentable sugars simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effects of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration were deduced empirically. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Although the simultaneous utilization has been observed regardless of hydrogen ion or lactic acid concentration, the preference of substrates and the formation of two-carbon products were changed significantly. In particular, acetic acid present in the medium as sodium acetate was consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

Fermented Production of Onion Vinegar and Its Biological Activities (알코올 발효과정 중 양파착즙액 휘발성 향기성분 변화)

  • Jeong, Eun-Jeong;Cha, Yong-Jun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.1
    • /
    • pp.120-128
    • /
    • 2017
  • This study aimed to provide volatile flavor compounds of three onion products through thermal process and alcohol fermentation, to meet the quality standard of onion products. The identified components of onion extracts (OE) included 49 (18 sulfur-containing compounds, 5 alcohols, 8 acids, 3 ketones, 4 esters, 4 aromatic compounds, 2 aldehydes, 1 pyrazines and 4 miscellaneous compounds), and 55 (17 sulfur-containing compounds, 15 alcohols, 5 acids, 11 ketones, 3 aromatic compounds, 2 aldehydes and 1 pyrazine) in autoclave-sterilized onion extracts (SOE); and 69 (10 sulfur-containing compounds, 27 alcohols, 11 acids, 11 ketones, 6 esters, 1 aromatic compound and 3 pyrazines) in onion wine (OW), respectively. Among the major flavor classes, sulfur-containing compounds (36.8%), acids (31.3%) and aldehydes (13.6%) in OE were changed to alcohols (46.5%) and ketones (27.3%) in SOE whereas, alcohols (56.3%) and acids (26.6%) in OW. Moreover, 1,3-butanediol, 2,3-butanediol, and 3-hydroxy-2-butanone were highly detected in SOE whereas, acetic acid, 3-methylbutanol, 2-phenylethanol and 1,2,3-propanetriol in OW.

Effect of Unsaturated Fatty Acids on Cellulose Degradation and Fermentation Characteristics by Mixed Ruminal Microbes

  • Hwang, I.H.;Kim, H.D.;Shim, S.S.;Lee, Sang S.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.501-506
    • /
    • 2001
  • This experiment was conducted to evaluate the effects of supplemental unsaturated fatty acids (UFA) on fermentation characteristics, especially on gas production, cellulose degradation and volatile fatty acid (VFA) concentration by mixed ruminal microorganisms. In order to attain this objective, unsaturated fatty acids including oleic acid (C 18:1), linoleic acid (C18:2) and arachidonic acid (C22:4) were added at varying level. Mixed ruminal microbes used in this experiment were obtained from the rumen of a cannulated Holstein cow. Medium pH values after 7 d incubation were significantly affected by type and level of unsaturated fatty acids (p<0.01). All of UFA inhibited total gas production, and especially treatment of arachidonic acid at the levels of 0.01% gave the lowest gas. production after 7 d incubation (p<0.01). Comparison of the population of protozoa revealed that UFA did not have any significant effect on the total protozoa number. The addition of UFA did not effect dry matter degradation. Volatile fatty acid (VFA) composition of the culture was influenced little by UFA, although the considerable amount of iso-type VFA were detected in UFA supplemented incubations. The ratio of acetic acids to propionic acids, however, was lower than control in all the treatments after 7 d incubation (p<0.01).

Genome-Wide Screening of Saccharomyces cerevisiae Genes Regulated by Vanillin

  • Park, Eun-Hee;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.50-56
    • /
    • 2015
  • During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.

Beneficial Effects of Lactic Acid Bacteria Inoculation on Oat Based Silage in South Korea

  • Ilavenil, Soundharrajan;Srigopalram, Srisesharam;Park, Hyung Soo;Kim, Won Ho;Lee, Kyung Dong;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.207-211
    • /
    • 2015
  • The objective of the study was to measure the beneficial effects of lactic acid bacteria (LAB) inoculation on the nutritive value of oat silage collected from thirteen regions in the Republic of Korea. The contents of crude protein, acid detergent fiber (ADF), neutral detergent fiber (NDF) and crude ash (CA) were slightly lower in LAB inoculated silage when compared with the control silage, whereas inoculation of LAB resulted in increased total digestible nutrient (TDN). Higher number of LAB, but lower count of yeast and fungi indicated the effectiveness of the LAB inoculation on oat silage fermentation. LAB inoculation resulted in low pH silage, which may prevent undesirable microbial growth. The LAB inoculation promoted lactic acid dominant fermentation with marginal levels of acetic acid and butyric acid in oat silage. These data suggest that the LAB inoculation may preserve oat silage at better quality for ruminant animal production.

Enhancement of Herboxidiene Production in Streptomyces chromofuscus ATCC 49982

  • Jha, Amit Kumar;Lamichhane, Janardan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Structurally, herboxidiene contains the tetrahydropyran acetic acid moiety and a side chain including a conjugated diene, and has been isolated from Streptomyces chromofuscus ATCC 49982. Its production was significantly elevated nearly 13.5-fold (0.74 g/l) in a medium supplemented with glycerol (medium No. 6A6), and was more efficacious (1.08 g/l; 19.8-fold) in fed-batch fermentation at 36 h in medium No. 6A6, from Streptomyces chromofuscus. For further enhancement, regulatory genes metK1-sp and afsR-sp from Streptomyces peucetius were overexpressed using an expression vector, pIBR25, and similarly ACCase from Streptomyces coelicolor and two genes, metK1-sp and afsR-sp, were also overexpressed using an integration vector, pSET152, under the control of the strong $ermE^*$ promoter in Streptomyces chromofuscus. Only the recombinant strains S. chromofuscus SIBR, S. chromofuscus GIBR, and S. chromofuscus AFS produced more herboxidiene than the parental strain in optimized medium No. 6A6 with an increment of 1.32-fold (0.976 g/l), 3.85-fold (2.849 g/l), and 1.7-fold(1.258 g/l) respectively.

Mechanisms of Carboxylic Acid Attraction in Drosophila melanogaster

  • Shrestha, Bhanu;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.44 no.12
    • /
    • pp.900-910
    • /
    • 2021
  • Sour is one of the fundamental taste modalities that enable taste perception in animals. Chemoreceptors embedded in taste organs are pivotal to discriminate between different chemicals to ensure survival. Animals generally prefer slightly acidic food and avoid highly acidic alternatives. We recently proposed that all acids are aversive at high concentrations, a response that is mediated by low pH as well as specific anions in Drosophila melanogaster. Particularly, some carboxylic acids such as glycolic acid, citric acid, and lactic acid are highly attractive to Drosophila compared with acetic acid. The present study determined that attractive carboxylic acids were mediated by broadly expressed Ir25a and Ir76b, as demonstrated by a candidate mutant library screen. The mutant deficits were completely recovered via wild-type cDNA expression in sweet-sensing gustatory receptor neurons. Furthermore, sweet gustatory receptors such as Gr5a, Gr61a, and Gr64a-f modulate attractive responses. These genetic defects were confirmed using binary food choice assays as well as electrophysiology in the labellum. Taken together, our findings demonstrate that at least two different kinds of receptors are required to discriminate attractive carboxylic acids from other acids.

Improvement of Orchardgrass (Dactylis glomerata L.) Silage Quality by Lactic Acid Bacteria

  • Ilavenil, Soundharrajan;Muthusamy, Karnan;Jung, Jeong Sung;Lee, Bae Hun;Park, Hyung Soo;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.302-307
    • /
    • 2021
  • In the current study, lactic lactic acid bacteria (LAB) Lactobacillus plantarum and Pediococcus pentosaceus were used as a mixed additive for the production of Orchardgrass silage by ensiled method and nutritional change fermentation ability and microbial content of experimental silages. The addition of LAB to Orchardgrass during ensiling process rapidly reduced the pH of the silages than the non-inoculated silages. In addition, the lactic and acetic acid content of silage was increased by LAB strains than the non-inoculated silages whereas butyric acid content was reduced in silage treated with LAB. A microbiological study revealed that higher LAB but lower yeast counts were observed in inoculated silages compared to non-inoculated silage. Overall data suggested that the addition of LAB stains could have ability to induce the fermentation process and improve the silage quality via increasing lactic acid and decreasing undesirable microbes.

Antioxidant Activities of Wine Fermented with Aronia (Aronia melanocarpa) (아로니아로 제조한 와인의 항산화 활성)

  • Hyeock-Soon Jang;Nan-Hee Lee;Ung-Kyu Choi
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.6
    • /
    • pp.445-451
    • /
    • 2023
  • This study investigated the antioxidant activities of wine made with aronia (Aronia melanocarpa). The ethanol concentration of the aronia wine was increased up to 7.8±0.1% on the 8th day of fermentation. Compared to other types of wine, the total amount of organic acids was highest in raspberry wine, followed by grape wine, arona wine, and aronia juice. Because, acetic, oxalic, and succinic acids were not detected in the aronia juice, but were detected in the aronia wine, it was determined that they were produced during alcohol fermentation. The polyphenol content in the aronia juice and wine was higher than in the grape wine and raspberry wine and was twice as much in the aroni wine than in the aronia juice. The flavonoid content in aronia juice and wine was higher than in commercial grape wine and raspberry wine. The DPPH radical scavenging ability was higher than 50% in the aronia wine and juice samples. ABTS radical scavenging activity was higher in aronia juice and wine than in raspberry wine and grape wine. The results of this study suggest that the development of wine with high antioxidant activity is possible if wine is made with aronia.