Browse > Article
http://dx.doi.org/10.4014/jmb.1409.09064

Genome-Wide Screening of Saccharomyces cerevisiae Genes Regulated by Vanillin  

Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University)
Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.1, 2015 , pp. 50-56 More about this Journal
Abstract
During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.
Keywords
Saccharomyces cerevisiae; DNA microarray; vanillin; stress response;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cerrutti P, Alzamora SM, Vidales SL. 1997. Vanillin as an antimicrobial for producing shelf-stable strawberry puree. J. Food Sci. 62: 608-610.   DOI   ScienceOn
2 Almeida JRM, Modig T, Petersson A, Hägerdal BH, Lidén G, Grauslund MFG. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349.   DOI   ScienceOn
3 Amoros M, Estruch F. 2001. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Mol. Microbiol. 39: 1523-1532.   DOI   ScienceOn
4 Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132.   DOI
5 Cerrutti P, Alzamora SM. 1996. Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purees. Int. J. Food Microbiol. 29: 379-386.   DOI   ScienceOn
6 Cortez DV, Roberto IC. 2010. Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by Candida guilliermondii. Bioresour. Technol. 101: 1858-1865.   DOI   ScienceOn
7 Dunlop AP. 1948. Furfural formation and behavior. Ind. Eng. Chem. 40: 204-209.   DOI
8 Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J. 2008. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 1: 3.   DOI   ScienceOn
9 García-López MC, Mirón-García MC, Garrido-Godino AI, Mingorance C, Navarro F. 2010. Overexpression of SNG1 causes 6-azauracil resistance in Saccharomyces cerevisiae. Curr. Genet. 56: 251-263.   DOI
10 Endo A, Nakamura T, Shima J. 2009. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 299: 95-99.   DOI   ScienceOn
11 Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ. 2006. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 20: 1294-1307.   DOI   ScienceOn
12 Galbe M, Zacchi G. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59: 618-628.   DOI   ScienceOn
13 Grey M, Pich CT, Haase E, Brendel M. 1995. SNG1 - a new gene involved in nitrosoguanidine resistance in Saccharomyces cerevisiae. Mutat. Res. 346: 207-214.   DOI   ScienceOn
14 Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C, Jensen OR, et al. 2009. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75: 2765-2774.   DOI   ScienceOn
15 Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkauf S, Buchner J. 2004. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J. 23: 638-649.   DOI   ScienceOn
16 Iwaki A, Ohnuki S, Suga Y, Izawa S, Ohya Y. 2013. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One 8: e61748.   DOI
17 Hong B, Wu K, Brockenbrough JS, Wu P, Aris JP. 2001. Temperature sensitive nop2 alleles defective in synthesis of 25S rRNA and large ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Res. 29: 2927-2937.   DOI   ScienceOn
18 Hubbell E, Liu WM, Mei R. 2002. Robust estimators for expression analysis. Bioinformatics 18: 1585-1592.   DOI   ScienceOn
19 Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, et al. 2003. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5: 539-545.   DOI   ScienceOn
20 Klinke HB, Thomsen AB, Ahring BK. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66: 10-26.   DOI
21 Kobayashi N, McEntee K. 1993. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell Biol. 13: 248-256.   DOI
22 Lin T, Tanaka S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642.   DOI
23 López-Malo A, Alzamora SM, Argaiz A. 1995. Effect of natural vanillin on germination time and radial growth of moulds in fruit-based agar systems. Food Microbiol. 12: 213-219.   DOI   ScienceOn
24 Mahmud SA, Hirasawa T, Furusawa C, Yoshikawa K, Shimizu H. 2012. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. J. Biosci. Bioeng. 113: 526-528.   DOI   ScienceOn
25 Modig T, Liden G, Taherzadeh MJ. 2002. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 363: 769-776.   DOI
26 Mulford KE, Fassler JS. 2011. Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 10: 761-769.   DOI
27 Makuc J, Paiva S, Schauen M, Krämer R, André B, Casal M, et al. 2001. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18: 1131-1143.   DOI   ScienceOn
28 Minique H, Faaij A, vanden Broek R, Berndes G, Gielen D, Turkenburg W. 2003. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25: 119-133.   DOI   ScienceOn
29 Nguyen TTM, Iwaki A, Ohya Y, Izawa S. 2014. Vanillin cause the activation of Yap1 and mitocondrial fragmentation in Saccharomyces cerevisiae. J. Biosci. Bioeng. 117: 33-38.   DOI   ScienceOn
30 Park EH, Lee HY, Ryu YW, Seo JH, Kim MD. 2011. Role of osmotic and salt stress in the expression of erythrose reductase in Candida magnoliae. J. Microbiol. Biotechnol. 21: 1064-1068.   DOI   ScienceOn
31 Rivera-Carriles K, Argaiz A, Palou E, Lopez-Malo A. 2005. Synergistic inhibitory effect of citral with selected phenolics against Zygosaccharomyces bailii. J. Food Prot. 68: 602-606.   DOI
32 Srokol Z, Bouche AG, van Estrik A, Strik RC, Maschmeyer T, Peters JA. 2004. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydr. Res. 339: 1717-1726.   DOI   ScienceOn
33 Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. 2003. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31: 15.   DOI   ScienceOn
34 Sunnarborg SW, Miller SP, Unnikrishnan I, LaPorte DC. 2001. Expression of the yeast glycogen phosphorylase gene is regulated by stress-response elements and by the HOG MAP kinase pathway. Yeast 18: 1505-1514.   DOI   ScienceOn
35 Treger JM, Schmitt AP, Simon JR, McEntee K. 1998. Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J. Biol. Chem. 273: 26875-26879.   DOI   ScienceOn
36 Trotter EW, Kao CM, Berenfeld L, Botstein D, Petsko GA, Gray JV. 2002. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J. Biol. Chem. 277: 44817-44825.   DOI   ScienceOn