1 |
Cerrutti P, Alzamora SM, Vidales SL. 1997. Vanillin as an antimicrobial for producing shelf-stable strawberry puree. J. Food Sci. 62: 608-610.
DOI
ScienceOn
|
2 |
Almeida JRM, Modig T, Petersson A, Hägerdal BH, Lidén G, Grauslund MFG. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349.
DOI
ScienceOn
|
3 |
Amoros M, Estruch F. 2001. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Mol. Microbiol. 39: 1523-1532.
DOI
ScienceOn
|
4 |
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132.
DOI
|
5 |
Cerrutti P, Alzamora SM. 1996. Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purees. Int. J. Food Microbiol. 29: 379-386.
DOI
ScienceOn
|
6 |
Cortez DV, Roberto IC. 2010. Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by Candida guilliermondii. Bioresour. Technol. 101: 1858-1865.
DOI
ScienceOn
|
7 |
Dunlop AP. 1948. Furfural formation and behavior. Ind. Eng. Chem. 40: 204-209.
DOI
|
8 |
Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J. 2008. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 1: 3.
DOI
ScienceOn
|
9 |
García-López MC, Mirón-García MC, Garrido-Godino AI, Mingorance C, Navarro F. 2010. Overexpression of SNG1 causes 6-azauracil resistance in Saccharomyces cerevisiae. Curr. Genet. 56: 251-263.
DOI
|
10 |
Endo A, Nakamura T, Shima J. 2009. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 299: 95-99.
DOI
ScienceOn
|
11 |
Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ. 2006. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 20: 1294-1307.
DOI
ScienceOn
|
12 |
Galbe M, Zacchi G. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59: 618-628.
DOI
ScienceOn
|
13 |
Grey M, Pich CT, Haase E, Brendel M. 1995. SNG1 - a new gene involved in nitrosoguanidine resistance in Saccharomyces cerevisiae. Mutat. Res. 346: 207-214.
DOI
ScienceOn
|
14 |
Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C, Jensen OR, et al. 2009. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75: 2765-2774.
DOI
ScienceOn
|
15 |
Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkauf S, Buchner J. 2004. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J. 23: 638-649.
DOI
ScienceOn
|
16 |
Iwaki A, Ohnuki S, Suga Y, Izawa S, Ohya Y. 2013. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One 8: e61748.
DOI
|
17 |
Hong B, Wu K, Brockenbrough JS, Wu P, Aris JP. 2001. Temperature sensitive nop2 alleles defective in synthesis of 25S rRNA and large ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Res. 29: 2927-2937.
DOI
ScienceOn
|
18 |
Hubbell E, Liu WM, Mei R. 2002. Robust estimators for expression analysis. Bioinformatics 18: 1585-1592.
DOI
ScienceOn
|
19 |
Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, et al. 2003. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5: 539-545.
DOI
ScienceOn
|
20 |
Klinke HB, Thomsen AB, Ahring BK. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66: 10-26.
DOI
|
21 |
Kobayashi N, McEntee K. 1993. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell Biol. 13: 248-256.
DOI
|
22 |
Lin T, Tanaka S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642.
DOI
|
23 |
López-Malo A, Alzamora SM, Argaiz A. 1995. Effect of natural vanillin on germination time and radial growth of moulds in fruit-based agar systems. Food Microbiol. 12: 213-219.
DOI
ScienceOn
|
24 |
Mahmud SA, Hirasawa T, Furusawa C, Yoshikawa K, Shimizu H. 2012. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. J. Biosci. Bioeng. 113: 526-528.
DOI
ScienceOn
|
25 |
Modig T, Liden G, Taherzadeh MJ. 2002. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 363: 769-776.
DOI
|
26 |
Mulford KE, Fassler JS. 2011. Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 10: 761-769.
DOI
|
27 |
Makuc J, Paiva S, Schauen M, Krämer R, André B, Casal M, et al. 2001. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18: 1131-1143.
DOI
ScienceOn
|
28 |
Minique H, Faaij A, vanden Broek R, Berndes G, Gielen D, Turkenburg W. 2003. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25: 119-133.
DOI
ScienceOn
|
29 |
Nguyen TTM, Iwaki A, Ohya Y, Izawa S. 2014. Vanillin cause the activation of Yap1 and mitocondrial fragmentation in Saccharomyces cerevisiae. J. Biosci. Bioeng. 117: 33-38.
DOI
ScienceOn
|
30 |
Park EH, Lee HY, Ryu YW, Seo JH, Kim MD. 2011. Role of osmotic and salt stress in the expression of erythrose reductase in Candida magnoliae. J. Microbiol. Biotechnol. 21: 1064-1068.
DOI
ScienceOn
|
31 |
Rivera-Carriles K, Argaiz A, Palou E, Lopez-Malo A. 2005. Synergistic inhibitory effect of citral with selected phenolics against Zygosaccharomyces bailii. J. Food Prot. 68: 602-606.
DOI
|
32 |
Srokol Z, Bouche AG, van Estrik A, Strik RC, Maschmeyer T, Peters JA. 2004. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydr. Res. 339: 1717-1726.
DOI
ScienceOn
|
33 |
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. 2003. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31: 15.
DOI
ScienceOn
|
34 |
Sunnarborg SW, Miller SP, Unnikrishnan I, LaPorte DC. 2001. Expression of the yeast glycogen phosphorylase gene is regulated by stress-response elements and by the HOG MAP kinase pathway. Yeast 18: 1505-1514.
DOI
ScienceOn
|
35 |
Treger JM, Schmitt AP, Simon JR, McEntee K. 1998. Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J. Biol. Chem. 273: 26875-26879.
DOI
ScienceOn
|
36 |
Trotter EW, Kao CM, Berenfeld L, Botstein D, Petsko GA, Gray JV. 2002. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J. Biol. Chem. 277: 44817-44825.
DOI
ScienceOn
|