Browse > Article
http://dx.doi.org/10.4014/jmb.1308.08063

Enhancement of Herboxidiene Production in Streptomyces chromofuscus ATCC 49982  

Jha, Amit Kumar (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, SunMoon University)
Lamichhane, Janardan (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, SunMoon University)
Sohng, Jae Kyung (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, SunMoon University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.1, 2014 , pp. 52-58 More about this Journal
Abstract
Structurally, herboxidiene contains the tetrahydropyran acetic acid moiety and a side chain including a conjugated diene, and has been isolated from Streptomyces chromofuscus ATCC 49982. Its production was significantly elevated nearly 13.5-fold (0.74 g/l) in a medium supplemented with glycerol (medium No. 6A6), and was more efficacious (1.08 g/l; 19.8-fold) in fed-batch fermentation at 36 h in medium No. 6A6, from Streptomyces chromofuscus. For further enhancement, regulatory genes metK1-sp and afsR-sp from Streptomyces peucetius were overexpressed using an expression vector, pIBR25, and similarly ACCase from Streptomyces coelicolor and two genes, metK1-sp and afsR-sp, were also overexpressed using an integration vector, pSET152, under the control of the strong $ermE^*$ promoter in Streptomyces chromofuscus. Only the recombinant strains S. chromofuscus SIBR, S. chromofuscus GIBR, and S. chromofuscus AFS produced more herboxidiene than the parental strain in optimized medium No. 6A6 with an increment of 1.32-fold (0.976 g/l), 3.85-fold (2.849 g/l), and 1.7-fold(1.258 g/l) respectively.
Keywords
Herboxidiene; Streptomyces chromofuscus; glycerol; fed-batch fermentation; metabolic engineering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sthapit B, Oh TJ, Lamichhane R, Liou K, Lee HC, Kim C-G, Sohng JK. 2004. Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206.   DOI   ScienceOn
2 Wang Y, Boghigian BA, Pfeifer BA. 2007. Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene. Appl. Microbiol. Biotechnol. 77: 367-373.   DOI   ScienceOn
3 Wise R. 2008. The worldwide threat of antimicrobial resistance. Curr. Sci. 95: 181-187.
4 Zhang Y, Panek JS. 2007. Total synthesis of herboxidiene/ GEX 1A. Org. Lett. 9: 3141-3143.   DOI   ScienceOn
5 Zhao XQ, Jin YY, Kwon HJ. 2006. S-Adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces s p p . in a mode independent of its role as a methyl donor. J. Microbiol. Biotechnol. 16: 927-932.
6 Murray TJ, Forsyth CJ. 2008. Total synthesis of GEX 1A. Org. Lett. 10: 3429-3431.   DOI   ScienceOn
7 Parajuli N, Viet HT, Ishida K, Tong HT, Lee HC, Liou K, Sohng JK. 2005. Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res. Microbiol. 156: 707-712.   DOI   ScienceOn
8 Park HR, Lee JC, Hwang JH, Park DJ, Kim CJ. 2007. Glycerol affects the acyl moieties of teicoplanin components produced by Actinoplanes teichomyceticus MSl2210. Microbiol. Res. 164: 588-592
9 Paudel S, Lee HC, Kim BS, Sohng JK. 2011. Enhancement of pradimicin production in Actinomadura hibisca P157-2 by metabolic engineering. Microbiol. Res. 167: 32-39.   DOI   ScienceOn
10 Pellicena M, Kramer K, Romea P, Urpi F. 2011. Total synthesis of (+)-herboxidiene from two chiral lactate-derived ketones. Org. Lett. 13: 5350-5353.   DOI   ScienceOn
11 Sakai Y, Tsujita T, Akiyama T, Yoshida T, Mizukami T, Akinaga S, et al. 2002. GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp. II. The effects on cell cycle progression and gene expression. J. Antibiot. 55: 863-872.   DOI
12 Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd E d. C old Sp ring H arbor Laboratory Press, Cold Spring Harbor, New York.
13 Shao L, Zi J, Zeng J, Zhan J. 2012. Identification of the herboxidiene biosynthetic gene cluster in Streptomyces chromofuscus ATCC 49982. Appl. Environ. Microbiol. 78: 2034- 2038.   DOI
14 Hasegawa M, Miura T, Kuzuya K, Inoue A, Won KS, Horinouchi S, et al. 2011. Identification of SAP155 as the target of GEX1A (herboxidiene), an antitumor natural product. ACS Chem. Biol. 6: 229-233.   DOI   ScienceOn
15 Horinouchi S. 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462-467.   DOI   ScienceOn
16 Kieser T, Mervyn JB, Mark BJ, Keith CF, David HA. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich.
17 Kim DJ, Huh JH, Yang YY, Kang CM, Lee IH, Hyun CG, et al. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600.   DOI   ScienceOn
18 Koguchi Y, Nishio M, Kotera J, Omori K, Ohnuki T, Komatsubara S. 1997. Trichostatin A and herboxidiene upregulate the gene expression of low density lipoprotein receptor. J. Antibiot. 50: 970-971.   DOI
19 Kun GD, Bao ZY, Qian YK. 2013. Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus. Sci. China Life Sci. 56: 591-600.   DOI   ScienceOn
20 Lee PC, Umeyama T, Horinouchi S. 2002. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43: 1413-4130.   DOI   ScienceOn
21 Maharjan S, Oh TJ, Lee HC, Sohng JK. 2008. Heterologous expression of metK1-sp and afsR-sp in Streptomyces venezuelae for the production of pikromycin. Biotechnol. Lett. 30: 1621- 1626.   DOI   ScienceOn
22 Maharjan S, Park JW, Yoon YJ, Lee HC, Sohng JK. 2010. Metabolic engineering of Streptomyces venezuelae for malonyl- CoA biosynthesis to enhance heterologous production of polyketides. Biotechnol. Lett. 32: 277-282.   DOI   ScienceOn
23 Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49.   DOI   ScienceOn
24 Miller-Wideman M, Makkar N, Tran M, Isaac B, Biest N, Stonard R. 1992. Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J. Antibiot. 45: 914-921.   DOI
25 Aharonowitz Y. 1980. Nitrogen metabolite regulation of antibiotic biosynthesis. Annu. Rev. Microbiol. 34: 209-233.   DOI   ScienceOn
26 Berdy J. 2005. Bioactive microbial metabolites. J. Antibiot. 58: 1-26.   DOI   ScienceOn
27 Blakemore PR, Kocienski PJ, Morley A, Muir K. 1999. A synthesis of herboxidiene. J. Chem. Soc. Perkin Trans. 1: 955-968.
28 Edmunds AJ, Trueb W, Oppolzer W, Cowley P. 1997. Herboxidiene: determination of absolute configuration by degradation and synthetic studies. Tetrahedron 53: 2785-2802.   DOI   ScienceOn
29 Ghosh AK, Li J. 2011. A stereoselective synthesis of (+)- herboxidiene/GEX1A. Org. Lett. 13: 66-69.   DOI   ScienceOn
30 Okamoto S, Lezhava A, Hosaka T, Okamoto-Hosoya Y, Ochi K. 2003. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3 (2). J. Bacteriol. 185: 601-609.   DOI   ScienceOn
31 Edmunds AJ, Arnold G, Hagmann L, Schaffner R, Furlenmeier H. 2000. Synthesis of simplified herboxidiene aromatic hybrids. Bioorg. Med. Chem. Lett. 10: 1365-1368.   DOI   ScienceOn
32 Sekurova O, Sletta H, Ellingsen TE, Valla S, Zotchev S. 1999. Molecular cloning and analysis of a pleiotropic regulatory gene locus from the nystatin producer Streptomyces noursei ATCC11455. FEMS Microbiol. Lett. 177: 297-304.   DOI   ScienceOn