• Title/Summary/Keyword: acetic acid bacteria fermentation

Search Result 164, Processing Time 0.032 seconds

Effects of Isolated and Commercial Lactic Acid Bacteria on the Silage Quality, Digestibility, Voluntary Intake and Ruminal Fluid Characteristics

  • Ando, Sada;Ishida, M.;Oshio, S.;Tanaka, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.386-389
    • /
    • 2006
  • Silage is a major component of cattle rations, so the improvement of silage quality by the inoculation of lactic acid bacteria is of great interest. In this study, commercially distributed Lactobacillus plantram and Lactobacillus rhamnousas NGRI 0110 were used for ensilaging of guinea grass. The four treatments used were a control silage, a silage with cellulase addition, a silage with cellulose+L. plantram addition, and a silage with cellulose + NGRI 0110 addition. Silage quality, voluntary intake, nutrient digestibility, and the characteristics of ruminal fluid of wethers were investigated. Silage to which lactic acid bacteria were added showed low pH and acetic acid concentration and the highest lactic acid content. Dry matter and organic matter digestibility were significantly (p<0.05) increased by cellulase addition and significantly (p<0.05) higher values were observed in L. plantram- and NGRI 0110-added silage. Voluntary intake of NGRI 0110-added silage was the highest and that of control silage was the lowest. We concluded that the observed ability of NGRI 0110 to tolerate low pH and to continue lactic acid fermentation in high lactic acid concentration had also occurred in actual ensilaging. The results indicate that the addition of lactic acid bacteria might improve silage quality and increase digestibility and voluntary intake. The potential for improvement by NGRI 0110 was higher than that to be gained by the use of commercially available lactic acid bacteria.

Quality Characteristics of Rice Wine according to the Rice Wine Seed Mash with Lactic Acid Concentration (젖산농도별 주모에 따른 막걸리의 품질 특성)

  • Huh, Chang-Ki;Lee, Jung-Won;Kim, Yong-Doo
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.933-938
    • /
    • 2012
  • The quality characteristics of rice wine seed mash and rice wine made with different lactic acid concentrations were investigated. The pH decreased along with the lactic acid concentration. The total titratable acid content of the rice wine seed mash was lowest when 0.5% lactic acid was added, and the ethanol contents of the mash samples were not significant. The results of the measurement of the microorganism number, C (cell numbers of the total bacteria and the lactic acid bacteria), decreased along with the lactic acid concentrations of the mash samples. The yeast cell numbers of the rice wine seed mash samples according to the lactic acid concentrations were high (0.5, 0.3, 1.0, control, and 0.7%, respectively). The pH and total titratable acid levels of rice wine according to the lactic acid concentration were stable during fermentation, according to the increase in the amount of lactic acid. The organic acids in the rice wines were highest in the lactic acid. The rice wines to which lactic acid had been added had lower acetic acid contents than the control. Also, the acetic acid contents decreased along with the lactic acid concentrations, except in the rice wine treated with 1.0% lactic acid. The ethanol contents of the tested rice wines were not significant. All in all, in the sensory evaluation, the rice wines treated with 0.5 and 0.7% lactic acid scored higher than the other treatments.

Effect of Low Temperature on the Qualities of Long-term Fermented Kimchi (Korean Pickled Cabbage) (저온이 묵은지의 발효에 미치는 영향)

  • Ji, Seol-Hee;Han, Woo-Cheul;Lee, Jae-Cheol;Cheong, Chul;Kang, Soon-Ah;Lee, Je-Hyuk;Jang, Ki-Hyo
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.804-809
    • /
    • 2009
  • Recently, many Koreans have started to consume aged kimchi fermented long-term at low temperatures. In the present study, the effect of low temperature ($5^{\circ}C$) on pH, titratable acidity (TA), organic acid level, viable microbial cell count, amino acid concentration, and polygalacturonase activity (PG) during long-term fermentation (46 weeks) of kimchi, were evaluated. After 10 weeks of fermentation, kimchi had a pH of 4.1 and a TA of 1.0%, respectively after 46 weeks fermentation, these values were 3.9 and 1.3%, respectively. Lactic acid, the ratio of lactic acid to acetic acid, and the ratio of Lactobacillus species/Leuconostoc species in kimchi increased as fermentation progressed from 10 weeks to 46 weeks. However, total viable cell counts of aerobic bacteria, yeasts, Lactobacillus species, and Leuconostoc species, free amino acid levels, and PG decreased as the fermentation period was extended from 10 weeks to 46 weeks.

Fermentative characteristics of wheat bran direct-fed microbes inoculated with starter culture

  • Kim, Jo Eun;Kim, Ki Hyun;Kim, Kwang-Sik;Kim, Young Hwa;Kim, Dong Woon;Park, Jun-Cheol;Kim, Sam-Chul;Seol, Kuk-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.387-393
    • /
    • 2016
  • This study was conducted to determine the fermentative characteristics of wheat bran inoculated with a starter culture of direct-fed microbes as a microbial wheat bran (DMWB) feed additive. Wheat bran was prepared with 1% (w/w, 0.5% Lactobacillus plantarum and 0.5% of Saccharomyces cerevisiae) starter culture treatment (TW) or without starter culture as a control (CW). Those were fermented under anaerobic conditions at $30^{\circ}C$ incubation for 3 days. Samples were taken at 0, 1, 2, and 3 days to analyze chemical composition, microbial growth, pH, and organic acid content. Chemical composition was not significantly different between CW and TW (p > 0.05). In TW, the number of lactic acid bacteria and yeast increased during the 3 days of fermentation (p < 0.05) and the population of lactic acid bacteria was significantly higher than in CW (p < 0.05). After 3 days, the number of yeast in TW was $7.50{\pm}0.07log\;CFU/g$, however, no yeast was detected in CW (p < 0.05). The pH values of both wheat bran samples decreased during the 3 days of fermentation (p < 0.05), and TW showed significantly lower pH than CW after 3 days of fermentation (p < 0.05). Contents of lactic acid and acetic acid increased significantly at 3rd day of fermentation in TW. However, no organic acids were generated in CW during testing period. These results suggest that 3 days of fermentation at $37^{\circ}C$ incubation after the inoculation wheat bran with starter culture makes it possible to produce a direct-feed with a high population of lactic acid bacteria at more than $10^{11}CFU/g$.

Isolation and Characterization of an Antifungal and Plant Growth-Promoting Microbe

  • Park, Se Won;Yang, Hee-Jong;Seo, Ji Won;Kim, Jinwon;Jeong, Su-ji;Ha, Gwangsu;Ryu, Myeong Seon;Yang, Hee Gun;Jeong, Do-Youn;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.441-454
    • /
    • 2021
  • Fungal diseases including anthracnose, stem rot, blight, wilting, and root rot of crops are caused by phytopathogens such as Colletotrichum species, Sclerotinia sclerotiorum, Phytophthora species, and Fusarium oxysporum and F. solani which threaten the production of chili pepper. In this study, to identify biological control agents (BCAs) of phytopathogenic fungi, potentially useful Bacillus species were isolated from the field soils. We screened out five Bacillus strains with antagonistic capacity that are efficiently inhibiting the growth of phytopathogenic fungi. Bacillus species were characterized by the production of extracellular enzymes, siderophores, and indole-3-acetic acid (IAA). Furthermore, the influence of bacterial strains on the plant growth promoting activity and seedling vigor index were assessed using Brassica juncea as a model plant. Inoculation with Bacillus subtilis SRCM 121379 significantly increased the length of B. juncea shoots and roots by 45.6% and 52.0%, respectively. Among the bacterial isolates, Bacillus subtilis SRCM 121379 showed the superior enzyme activities, antagonistic capacity and plant growth promoting effects. Based on the experimental results, Bacillus subtilis SRCM 121379 (GenBank accession no. NR027552) was finally selected as a BCA candidate.

A Study on Wooung(Burdock, Arctium Iappa, L) Kimchi-Changes in Chemical, Microbial, Sensory Characteristics and Volatile Flavor Components in Wooung Kimchi during Fermentation

  • Han, Ji-Sook;Cheigh, Mee-Jeung;Kim, Seong-Joon;Rhee, Sook-Hee;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.30-36
    • /
    • 1996
  • This study was conducted to investigate the changes in chemical, microbial, sensory characteristics and volatile flavor components of wooung(burdock, Arctium lappa, L) kimchi during fermentation at 15$^{\circ}C$, Three types(A, B, C) of wooung kimchi were prepared. Sample A was prepared with basic ingredients, in the other hand, sample B was prepared with all sorts of ingredients. These samples were mixed after salting the sliced burdock with 4% brine for 30min. Sample C was prepared mixing with all sorts of ingredients after blanching the sliced burdock with 2% vinegar solution. pH decreased slowly until 3 day, and then decreased rapidly for 4~7 days in all samples. Total acidity increased gradually in all samples. The changes of pH and total acidity were the sample C and were the greatest in sample B. The reducing sugar contents decreased slowly until 7 day, and decreased rapidly for 8~14 days in sample A and B, and at 10 day in sample C, respectively. The numbers of lactic acid bacteria and total bacteria of sample B were much greater than those of other sample. In sensory evaluation, sample B exhibited the best scores and sample C showed the worst scores in all characteristics. The major volatile components in wooung kimchi were identified as ethanol, hexanal, 2-hexenal, disulfide dl- 2-prophenyl, zingiberene and $\beta$-sesquiphellandrene. The relative amounts of hexanal, 1-hexanol and ethanol were decreased, while the relative amounts of acetic acid ethyl ester, 3-htdroxy-2-butanone and acetis acid were increased gradually during fermentation.

  • PDF

Quality and Fermentation Characteristics of Kimchi Made with Different Types of Dried Red Pepper (Capsicum annum L.)

  • Jeong, Jin-Woong;Kim, Ok-Sun;Sung, Jung-Min
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.74-82
    • /
    • 2011
  • The fermentation and quality characteristics of kimchi, made by adding different types of red pepper (semi-dried red pepper, fresh red pepper, dried red pepper) according to drying conditions, were examined for 15 days at $10^{\circ}C$ fermentation. The initial pH was approximately 5.65~5.72 in all groups, and the pH decreased with increasing fermentation time. The color value of a/b showed the highest in kimchi that made with semi-dried red pepper (SDRP-K). The color value of A remained at the initial level for 9 days, regardless of treatments. The color value had a tendency to decrease after 9 days. The lactic acid bacteria increased rapidly during 6 days of storage, but showed no difference among groups. The initial contents of malic acid and succinic acid were in 3.23~4.52 and 6.12~7.97 mg/mL and decreased during fermentation in all groups. The lactic acid and acetic acid were not contained in the beginning, but increased with increasing fermentation periods. The vitamin C content of SDRP-K was 5.20 mg/g, which was significantly higher compared with kimchi that made with dried red pepper (DRP-K), but which did not show any significant difference to kimchi that made with fresh red pepper (FRP-K). As a result of antioxidant activity in optimally ripened kimchi, both $DPPH^+$ and $ABTS^+$ scavenging activities were higher in SDRP-K than any other groups. As a result of the sensory evaluation, overall acceptability was highest in SDRP-K.

Changes of Organic Acids and Free Fatty Acids During the Ripening of Emmental Cheese (에멘탈치즈의 숙성 중 유기산과 유리지방산의 변화)

  • Shin, Yong-Kook;Oh, Nam-Su;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.928-934
    • /
    • 2011
  • The objective of this study was to characterize the lactate metabolism and lipolysis in Emmental cheese made of Korean raw milk throughout the ripening periods; 14 d at $10^{\circ}C$, 42 d at $23^{\circ}C$, and 30 d at $4^{\circ}C$. Emmental cheese was made using a commercial starter culture with propionic acid bacteria (PAB) and without PAB as a control on the pilot plant scale. Changes in the contents of five organic acids (citric, lactic, formic, acetic, and propionic acid) and individual free fatty acids (FFAs) were measured using HPLC/PDA and GC/FID. As a result of propionic fermentation by PAB, the concentration of acetic acid and propionic acid increased up to 1.5 and 6.1 g/kg, respectively and the most dramatic increased occurred when incubated in the hot room ($23^{\circ}C$). Lactic, citric, and formic acid contents were 2.6, 2.5 and 0.8 g/kg at the end of ripening, respectively. As a result of lipolysis, the amount of total FFAs was 6,628.2 mg/kg. Compared to the control, levels of individual FFAs from butyric (C6:0) to linoleic (C18:2) acids increased significantly (p<0.05) during the ripening period. Especially, 65.1% of total FFAs was released in the $23^{\circ}C$ room and the most abundant FFAs were palmitic (C16:0), stearic (C18:0) and oleic acid (C18:1). These results demonstrated that the lipolysis of Emmental cheese was strongly affected by bacterial lipase from PAB.

Culture Conditions of Garlic Resistant Lactic Acid Bacteria for Feed Additives (사료첨가용 생균제 개발을 위한 마늘 내성 유산균의 배양 조건)

  • Kim, Yu-Jin;Jang, Seo-Jung;Park, Jung-Min;Kim, Chang-Uk;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.65-74
    • /
    • 2010
  • Culture conditions of L. plantarum TJ-LP-002, the garlic resistant strain isolated from pakimchi (green onion kimchi), were investigated for the use of feed additives. Acetic acid, citric acid, lactic acid, and tartaric acid were detected in the culture supernatant, and especially the concentrations of lactic acid and acetic acid significantly increased during cultivation. The antimicrobial activity of L. plantarum TJ-LP-002 was not affected by proteases, calatase or cellulase, which showed that the antimicrobial activity might be due to the production of acids rather than proteinaceous antimicrobial substances. L. plantarum TJ-LP-002 was resistant to neomycin sulfate, spectinomycin dihydrochloride, and lincomycin hydrochloride, sensitive to streptomycin sulfate, and intermediate resistant to ampicillin trihydrate, chloramphenicol, erythromycin, tetracycline hydrochloride, and kanamycin sulfate. The optimum initial pH of medium, fermentation temperature and time for the cell growth and antibacterial activity were pH 7.0, 30${^{\circ}C}$ and 24hr, respectively. The optimal composition of culture medium for the cell growth and antimicrobial activity was 3%(w/v) glucose as a carbon source, 3%(w/v) yeast extract as a nitrogen source, and manganese sulfate and ammonium citrate as inorganic salts. The combinatorial supplementation of these inorganic salts, rather than sole addition as an inorganic salt, resulted in better antibacterial activity.

Effects of calcium propionate on the fermentation quality and aerobic stability of alfalfa silage

  • Dong, Zhihao;Yuan, Xianjun;Wen, Aiyou;Desta, Seare T.;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1278-1284
    • /
    • 2017
  • Objective: To assess the potency of calcium propionate (CAP) used as silage additive, an experiment was carried out to evaluate the effect of CAP on the nitrogen transformation, fermentation quality and aerobic stability of alfalfa silages. Methods: Alfalfa was ensiled with four levels of CAP (5, 10, 15, and 20 g/kg of fresh weight [FW]) in laboratory silos for 30 days. After opening, the silages were analyzed for the chemical and microbiological characteristics, and subjected to an aerobic stability test. Results: The increasing proportion of CAP did not affect pH, lactic acid (LA) concentrations and yeast counts, while linearly decreased counts of enterobacteria (p = 0.029), molds (p<0.001) and clostridia (p<0.001), and concentrations of acetic acid (p<0.001), propionic acid (p<0.001), butyric acid (p<0.001), and ethanol (p = 0.007), and quadratically (p = 0.001) increased lactic acid bacteria counts. With increasing the proportion of CAP, the dry matter (DM) loss (p<0.001), free amino acid N (p<0.001), ammonia N (p = 0.004), and non-protein N (p<0.001) contents were linearly reduced, whereas DM (p = 0.048), water soluble carbohydrate (p<0.001) and peptide N (p<0.001) contents were linearly increased. The highest Flieg's point was found in CAP10 (75.9), represented the best fermentation quality. All silages treated with CAP improved aerobic stability as indicated by increased stable hours compared with control. Conclusion: The addition of CAP can suppress the undesirable microorganisms during ensiling and exposure to air, thereby improving the fermentation quality and aerobic stability as well as retarding the proteolysis of alfalfa silage. It is suggested that CAP used as an additive is recommended at a level of 10 g/kg FW.