• 제목/요약/키워드: acd

Search Result 293, Processing Time 0.019 seconds

Changes of Total and Ionized Calcium following Cardiopulmonary Bypass (심폐관류에 따른 혈청칼슘의 변동)

  • 전상훈
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.240-245
    • /
    • 1988
  • This study was prospectively planned to realize the reduction of calcium ion in serum along with the cardiopulmonary bypass[CPB], to find out the cause of the reduction, and to verify the justification of the classical methods of calcium replacement. Nine patients with various open heart surgeries by CPB in 1987 wee selected at random. Calcium chloride was added as follows:: For each unit of ACD blood transfusion, 600mg of calcium chloride was added. In case of massive transfusion, 600 mg of calcium chloride was injected every 2 or 3 units of transfusion. On occasions such as weaning from CPB, or following defibrillation, or hypotension, weak myocardial contractility of the heart, calcium chloride was needed in an amount of 10 mg / kg. In ICU, calcium chloride was limited to use in low serum level or in emergency use. Total calcium decreased early bypass and progressively increased above the preoperative value during late bypass and three hours thereafter, Ionized calcium increased during late bypass and three hours following. Total and ionized calcium depicted similar patterns of change during open heart surgery. Decrease of the calcium at the early bypass was thought from reduction of total protein and alkalosis during bypass. Meanwhile, increase of both calciums during the end of surgery was presumably attributable to addition of calcium chloride in priming solution, injections of calcium chloride in the process of termination of bypass. We conclude that enough calcium was replaced by the classical methods of calcium supplement.

  • PDF

The Clinical Experience of 610 Cases Open Heart Surgery (개심술 610례에 관한 임상적 고찰)

  • 정황규
    • Journal of Chest Surgery
    • /
    • v.21 no.1
    • /
    • pp.36-47
    • /
    • 1988
  • 610 cases of open heart surgery was performed in the Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital from July 1981 to September 1987. The clinical data was summarized as follows: 1. The age distribution of congenital heart surgery patients was 2 to 41 years old [mean; 13.2 years] and surgery for acquired heart disease was 10 to 57 years old [mean: 32.8 years]. 2. There were 389 cases [63.8%] of acyanotic congenital heart anomalies, 63 cases [10.3%] of cyanotic congenital anomalies and 158 cases [25.9%] of acquired heart disease. 3. For myocardial protection, Bretschneider and potassium glucose solution had been used as cardioplegic solution and then since 1983, GIK solution has been used with repeated infusion method once for every 20 to 30 minutes of time interval after starting initial cardioplegia during operation with excellent results. 4. The ingredient of the priming solution is Hartmann`s solution, sodium bicarbonate, mannitol, potassium chloride, fresh ACD whole blood, calcium chloride, heparin and dexamethasone. 5. There were 96 cases [15.7%] of mild hypothermia, 333 cases [54.6%] of moderate hypothermia and 181 cases [29.7%] of intermediate hypothermia. 6. The mortality rate was 2.3% [9 out of 389 cases] in acyanotic congenital heart disease, 36.5% [23 out of 63 cases] in cyanotic congenital heart disease and 10.8% [17 out of 158 cases] in acquired heart disease, with overall mortality rate of 8.0% [49 out of 610 cases].

  • PDF

Ballistic impact analyses of triangular corrugated plates filled with foam core

  • Panigrahi, S.K.;Das, Kallola
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.139-154
    • /
    • 2016
  • The usage of sandwich structure is extensively increasing in lightweight protective structures due to its low density and other useful properties. Sandwich panels made of metal sheets with unfilled cellular cores are found to exhibit lower deflections by comparing to an equivalent monolithic plate of same metal and similar mass per unit density. However, the process of localized impact on solid structures involving plastic deformation, high strain rates, temperature effect, material erosion, etc. does not hold effectively as that of monolithic plate. In present work, the applications of the sandwich plate with corrugated core have been extended to develop optimized lightweight armour using foam as medium of its core by explicit finite element analysis (FEA). The mechanisms of hardened steel projectile penetration of aluminum corrugated sandwich panels filled with foams have been numerically investigated by finite element analysis (FEA). A comparative study is done for the triangular corrugated sandwich plate filled with polymeric foam and metallic foam with different densities in order to achieve the optimum penetration resistance to ballistic impact. Corrugated sandwich plates filled with metallic foams are found to be superior when compared to the polymeric one. The optimized results are then compared with that of equivalent solid and unfilled cores structure to observe the effectiveness of foam-filled corrugated sandwich plate which provides an effective resistance to ballistic response. The novel structure can be the alternative to solid aluminum plate in the applications of light weight protection system.

Methodological research of obese children focused on the recent clinical researches (최근 임상연구를 중심으로 한 소아비만에 관한 방법론적 연구)

  • Lee, Hyun-Sook;Kim, Jang-Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.11-26
    • /
    • 2007
  • Objectives : The purpose of this study is to investigate the recent tendency of clinical researches of obese children for finding better oriental medicine treatments. Methods : This study was focused on diagnoses, treatments, prognoses and cures of obese children based on 37 of other papers which are J Korean Oriental Med, J Korean Oriental Pediatrics, J Korean Acd Fam Med, J Korean society for the study of obesity, Korea Sport Research, J Korean Academy of Pediatric Allergy and Respiratory Disease, J Korean Society for Health Education and Promotion, Korean J Pediatric, and Korean J Oriental Physiology and Pathology. Results : The rate of obese children has been increased continuously. There are several reasons for increased rate : For example, inadequate eating habit, lack of exercise, and genetic factors such as inherited diseases, and the disorder of the endocrine system. The obesity in childhood or adolescent can cause not only the physical problems but also the mental problems. It is necessary for children to diet, change life style, exercise continuously, and being active in order to prevent child obesity and keep healthy. Obesity can be treated through therapy diet, exercise, behavior modification, drug therapy and operation. Conclusion : It is important to recognize the children obesity, and make better treatments for that in the way of oriental cure. Moreover, additional reports should be keeping up based on continuing clinical researches.

  • PDF

Studies on structural interaction and performance of cement composite using Molecular Dynamics

  • Sindu, B.S.;Alex, Aleena;Sasmal, Saptarshi
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.147-163
    • /
    • 2018
  • Cementitious composites are multiphase heterogeneous materials with distinct dissimilarity in strength under compression and tension (high under compression and very low under tension). At macro scale, the phenomenon can be well-explained as the material contains physical heterogeneity and pores. But, it is interesting to note that this dissimilarity initiates at molecular level where there is no heterogeneity. In this regard, molecular dynamics based computational investigations are carried out on cement clinkers and calcium silicate hydrate (C-S-H) under tension and compression to trace out the origin of dissimilarity. In the study, effect of strain rate, size of computational volume and presence of un-structured atoms on the obtained response is also investigated. It is identified that certain type of molecular interactions and the molecular structural parameters are responsible for causing the dissimilarity in behavior. Hence, the judiciously modified or tailored molecular structure would not only be able to reduce the extent of dissimilarity, it would also be capable of incorporating the desired properties in heterogeneous composites. The findings of this study would facilitate to take step to scientifically alter the structure of cementitious composites to attain the desired mechanical properties.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

Static analysis of functionally graded non-prismatic sandwich beams

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Mokhtari, M.
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.165-190
    • /
    • 2018
  • In this article, the static behavior of non-prismatic sandwich beams composed of functionally graded (FG) materials is investigated for the first time. Two types of beams in which the variation of elastic modulus follows a power-law form are studied. The principle of minimum total potential energy is applied along with the Ritz method to derive and solve the governing equations. Considering conventional boundary conditions, Chebyshev polynomials of the first kind are used as auxiliary shape functions. The formulation is developed within the framework of well-known Timoshenko and Reddy beam theories (TBT, RBT). Since the beams are simultaneously tapered and functionally graded, bending and shear stress pushover curves are presented to get a profound insight into the variation of stresses along the beam. The proposed formulations and solution scheme are verified through benchmark problems. In this context, excellent agreement is observed. Numerical results are included considering beams with various cross sectional types to inspect the effects of taper ratio and gradient index on deflections and stresses. It is observed that the boundary conditions, taper ratio, gradient index value and core to the thickness ratio significantly influence the stress and deflection responses.

Determination of strut efficiency factor for concrete deep beams with and without fibre

  • Sandeep, M.S.;Nagarajan, Praveen;Shashikala, A.P.;Habeeb, Shehin A.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.253-264
    • /
    • 2016
  • Based on the variation of strain along the cross section, any region in a structural member can be classified into two regions namely, Bernoulli's region (B-region) and Disturbed region (D-region). Since the variation of strain along the cross section for a B-region is linear, well-developed theories are available for their analysis and design. On the other hand, the design of D-region is carried out based on thumb rules and past experience due to the presence of nonlinear strain distribution. Strut-and-Tie method is a novel approach that can be used for the analysis and design of both B-region as well as D-region with equal importance. The strut efficiency factor (${\beta}_s$) is needed for the design and analysis of concrete members using Strut and Tie method. In this paper, equations for finding ${\beta}_s$ for bottle shaped struts in concrete deep beams (a D-region) with and without steel fibres are developed. The effects of transverse reinforcement on ${\beta}_s$ are also considered. Numerical studies using commercially available finite element software along with limited amount of experimental studies were used to find ${\beta}_s$.

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.

Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation

  • Choi, Ji Won;Lim, Jun
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.524-529
    • /
    • 2016
  • Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.