• 제목/요약/키워드: accretion disks

검색결과 50건 처리시간 0.022초

THE LONGEVITY OF CIRCUMSTELLAR DISKS: THE η CHAMAELEONTIS CLUSTER

  • LYO A-RAN;LAWSON W. A.
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.241-244
    • /
    • 2005
  • We have analysed near-infrared JHKL observations of the members of the $\approx$9 Myr-old $\eta$ Chamaeleontis cluster. Using (J - H)/(K - L) and (H - K)/(K - L) IR colour-colour diagrams for the brightest 15 members of the cluster, we find the fraction of stellar systems with near-IR excess emission was 0.60 $\pm$ 0.13 (2$\sigma$). For the CTT and WTT star population, we also find a strong correlation between the IR excess and Ha emission which is also known as an accretion indicator. The (K - L) excess of these stars appears to indicate a wide range of star-disk activity; from a CTT star with high levels of accretion, to CTT - WTT transitional objects with evidence for some on-going accretion, and WTT stars with weak or absent IR excesses. Among the brightest 15 members, four stars (RECX 5, 9, 11 and ECHA J0843.3-7905) with IR excesses ${\Delta}$(K - L) > 0.4 mag and strong or variable optical emission were identified as likely experiencing on-going mass accretion from their circumstellar disks which we confirmed their accretion disks from the optical high-resolution echelle spectroscopic study. The result-ing accretion fraction of 0.27 $\pm$ 0.13 (2$\sigma$) suggests that the accretion phase, in addition to the disks themselves, can endure for at least ${\~}$10 Myr.

THE INSTABILITIES OF ACCRETION DISKS WITH RADIAL ADVECTION

  • WU XUE-BING
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.231-232
    • /
    • 1996
  • The local instabilities of accretion disks were extensively studied, with the considerations of radial advection, thermal diffusion and different disk geometry, dominated pressure and optical depth. Two inertial-acoustic modes in a geometrically thin, radiative cooling dominated disk depart from each other if very little advection is included. A geometrically slim, advection-dominated disk is found to be always stable if it is optically thin. However, if it is optically thick, the thermal diffusion has no effect on the stable viscous mode but has a significant contribution to enhance the thermal instability.

  • PDF

ELECTRON-POSITRON PAIRS IN ACCRETION DISKS

  • Shin, Mine-Shige;Kusunose, Masaaki
    • 천문학논총
    • /
    • 제8권1호
    • /
    • pp.265-272
    • /
    • 1993
  • Recent X-ray observations of the accretion disks in stellar black hole candidates have revealed rather complex behavior, which cannot be fully described by the simple picture of the standard disk model. In this paper, therefore, we discuss the effects of e+e- pair creation on the structure and the stability of hot accretion disks, aiming at the thorough understanding of emission properties of X-ray binaries containing black holes.

  • PDF

MAGNETIC FIELDS IN STARS AND DISKS

  • VISHNIAC ETHAN T.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.201-204
    • /
    • 1996
  • Magnetic fields are thought to playa role in a wide variety of important astrophysical processes, from angular momentum transport and jet formation in accretion disks to corona formation in stars. Unfortunately, the dynamics of magnetic fields in astrophysical plasmas are extremely complicated, and the success of current theoretical models and computer simulations seems to be inversely correlated with the amount of observational detail available to us. Here I will discuss some of the more striking conflicts between numerical simulations and observations, and present an explanation for them based on an important dynamical process which is not adequately modeled in current numerical simulations. These processes will lead to the formation of flux tubes in stars and accretion disks, in accordance with observations. I will discuss some of the implications of flux tube formation for stellar and accretion disk dynamos.

  • PDF

POLARIZATION OF FIR EMISSION FROM T TAURI DISKS

  • Cho, Jung-Yeon;Lazarian, A.
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.113-118
    • /
    • 2007
  • Recently far infra-red (FIR) polarization of the $850{\mu}m$ continuum emission from T Tauri disks has been detected. The observed degree of polarization is around 3 %. Since thermal emission from dust grains dominates the spectral energy distribution at the FIR regime, dust grains might be the cause of the polarization. We explore alignment of dust grains by radiative torque in T Tauri disks and provide predictions for polarized emission for disks viewed at different wavelengths and viewing angles. In the presence of magnetic field, these aligned grains produce polarized emission in infrared wavelengths. When we take a Mathis-Rumpl-Nordsieck-type distribution with maximum grain size of $500-1000{\mu}m$, the degree of polarization is around 2-3 % level at wavelengths larger than ${\sim}100{\mu}m$. Our study indicates that multifrequency infrared polarimetric studies of protostellar disks can provide good insights into the details of their magnetic structure.

New Instabilities in Accretion Flows onto Black Holes

  • MOLTENI D.;FAUCI F.;GERARDI G.;BISIKALO D.;KUZNETSOV O.;ACHARYA K.;CHAKRABARTI S.
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.247-249
    • /
    • 2001
  • The accretion disks are usually supposed symmetric to reflection on the Z=0 plane. Asymmetries in the flow are be ver-y small in the vicinity of the compact accretor. However their existence can have a important role in the case of subkeplerian accretion flows onto black holes. These flows lead to strong heating and even to the formation of shocks close to the centrifugal barrier. Large asymmetries are due to the development of the KH instability triggered by the small turbulences at the layer separating the incoming flow from the out coming shocked flow. The consequence of this phenomenon is the production of asymmetric outflows of matter and quasi periodic oscillations of the inner disk regions up and down the Z=0 plane.

  • PDF

Radiation Hydrodynamics of 2-D Accretion Disks

  • OKUDA TORU
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.251-254
    • /
    • 2001
  • To examine the structure and dynamics of thick accretion disks, we use a two-dimensional viscous hydrodynamic code coupled with radiation transport. The $\alpha$-model and the full viscous stress-tensor description for the kinematic viscosity are used. The radiation transport is treated in the gray, flux-limited diffusion approximation. The finite difference methods used are based on an explicit-implicit method. We apply the numerical code to the Super-Eddington black-hole model for SS 433.@The result for a very small viscosity parameter a reproduces well the characteristic features of SS 433, such as the relativistic jets with $\~$0.26c, the small collimation degree of the jets, the mass-outflow rate of ${\ge}5{\times}10^{-7}M{\bigodot}yr^{-1}$, and the formation of the X-ray iron emission lines.

  • PDF

Episodic Accretion in Star and Planet Formation

  • Lee, Jeong-Eun
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.33.1-33.1
    • /
    • 2019
  • Protostars grow their mass by the accretion of disk material, which is infalling from the envelope. This accretion process is important to the physical and chemical conditions of the disk and envelope, and thus, the planets yet to be formed from the disk material. Therefore, if we map the physical and chemical properties of disks and envelopes, we can study indirectly the accretion process in star formation. In particular, the chemical distribution in the disk and the inner envelope of a young stellar object is greatly affected by the thermal history, which is mainly determined by the accretion process in the system. In my talk, I will review the episodic accretion model for the low mass star formation and observational efforts to find the evidence of episodic accretion. Finally, I will present our recent ALMA detection of several complex organic molecules associated directly with the planet formation in V883 Ori, which is in the burst accretion phase.

  • PDF

CONSTRAINING THE MAGNETIC FIELD IN THE ACCRETION FLOW OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

  • QIAO, ERLIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.457-459
    • /
    • 2015
  • Observations show that the accretion flows in low-luminosity active galactic nuclei (LLAGNs) probably have a two-component structure with an inner hot, optically thin, advection dominated accretion flow (ADAF) and an outer truncated cool, optically thick accretion disk. As shown by Taam et al. (2012), within the framework of the disk evaporation model, the truncation radius as a function of mass accretion rate is strongly affected by including the magnetic field. We define the parameter ${\beta}$ as $p_m=B^2/8{\pi}=(1-{\beta})p_{tot}$, (where $p_{tot}=p_{gas}+p_m$, $p_{gas}$ is gas pressure and $p_m$ is magnetic pressure) to describe the strength of the magnetic field in accretion flows. It is found that an increase of the magnetic field (decreasing the value of ${\beta}$) results in a smaller truncation radius for the accretion disk. We calculate the emergent spectrum of an inner ADAF + an outer truncated accretion disk around a supermassive black hole by considering the effects of the magnetic field on the truncation radius of the accretion disk. By comparing with observations, we found that a weaker magnetic field (corresponding to a bigger value of ${\beta}$) is required to match the observed correlation between $L_{2-10keV}/L_{Edd}$ and the bolometric correction $k_{2-10keV}$, which is consistent with the physics of the accretion flow with a low mass accretion rate around a black hole.