DOI QR코드

DOI QR Code

THE LONGEVITY OF CIRCUMSTELLAR DISKS: THE η CHAMAELEONTIS CLUSTER

  • LYO A-RAN (Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA)) ;
  • LAWSON W. A. (School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy)
  • Published : 2005.06.01

Abstract

We have analysed near-infrared JHKL observations of the members of the $\approx$9 Myr-old $\eta$ Chamaeleontis cluster. Using (J - H)/(K - L) and (H - K)/(K - L) IR colour-colour diagrams for the brightest 15 members of the cluster, we find the fraction of stellar systems with near-IR excess emission was 0.60 $\pm$ 0.13 (2$\sigma$). For the CTT and WTT star population, we also find a strong correlation between the IR excess and Ha emission which is also known as an accretion indicator. The (K - L) excess of these stars appears to indicate a wide range of star-disk activity; from a CTT star with high levels of accretion, to CTT - WTT transitional objects with evidence for some on-going accretion, and WTT stars with weak or absent IR excesses. Among the brightest 15 members, four stars (RECX 5, 9, 11 and ECHA J0843.3-7905) with IR excesses ${\Delta}$(K - L) > 0.4 mag and strong or variable optical emission were identified as likely experiencing on-going mass accretion from their circumstellar disks which we confirmed their accretion disks from the optical high-resolution echelle spectroscopic study. The result-ing accretion fraction of 0.27 $\pm$ 0.13 (2$\sigma$) suggests that the accretion phase, in addition to the disks themselves, can endure for at least ${\~}$10 Myr.

Keywords

References

  1. Alcala J. M., Krautter J., Covino E., Neuhaeuser R., Schmitt J. H. M. M., & Wichmann R., 1997, A&A, 319, 184
  2. Bessell M. S. & Brett J. M., 1988, PASP, 100, 1134 https://doi.org/10.1086/132281
  3. Clausen J. V. & Nordstrom B., 1978, A&AS, 33, 87
  4. Covino E., Alcala J. M.,Allain S., Bouvier J., Terranegra L., & Krautter J., 1997, A&A, 328, 187
  5. Haisch K. E. Jr., Lada E. A., & Lada C. J., 2000, AJ, 120, 1396 https://doi.org/10.1086/301521
  6. Haisch K. E. Jr., Lada E. A.,, & Lada C. J., 2001, ApJ, 553, L153 https://doi.org/10.1086/320685
  7. Hartmann L., Calvet N., Gullbring E.,, & D'Alessio P., 1998, ApJS, 70, 899 https://doi.org/10.1086/191361
  8. Kenyon S. J., & Gomez M., 2001, AJ, 121, 2673 https://doi.org/10.1086/320409
  9. Lada C. J., Muench A. A., Haisch K. E. Jr., Lada E. A., Alves J. F., Tollestrup E. V.,, & Willner S. P., 2000, AJ, 120, 3162 https://doi.org/10.1086/316848
  10. Lawson W. A., Crause L. A., Mamajek E. E.,, & Feigelson E. D., 2002, MNRAS, 329, L29 https://doi.org/10.1046/j.1365-8711.2002.04964.x
  11. Lawson W. A. & Feigelson E. D., 2001, in Montmerle T., Andre P, eds, ASP Conf. Series Vol. 243, From Darkness To Light, Astron. Soc. Pac., San Francisco, 591
  12. Lawson W. A., Lyo A-R.,, & Muzerolle J., 2004, MNRAS, 351, L39 https://doi.org/10.1111/j.1365-2966.2004.07959.x
  13. Lyo A-R., Lawson W. A.,, & Bessell M. S., 2004b, MNRAS, 355, 363 https://doi.org/10.1111/j.1365-2966.2004.08318.x
  14. Lyo A-R., Lawson W. A., Feigelson E. D.,, & Crause L. A., 2004a, MNRAS, 347, 246 https://doi.org/10.1111/j.1365-2966.2004.07194.x
  15. Mamajek E. E., Lawson W. A.,, & Feigelson E. D., 1999, ApJ, 516, L77 https://doi.org/10.1086/307096
  16. Mamajek E. E., Lawson W. A.,, & Feigelson E. D., 2000, ApJ, 544, 356 https://doi.org/10.1086/317181
  17. Meyer M. R., Calvet N.,, & Hillenbrand L. A., 1997, AJ, 114, 288 https://doi.org/10.1086/118474
  18. Muzerolle J., Calvet N., Briceno C., Hartmann L.,, & Hillenbrand L., 2000, ApJ, 535, L47 https://doi.org/10.1086/312691
  19. Pollack J. B., Hubickyj O., Bodenheimer P., Lissauer J. J., Podolak M., & Greenzweig Y., 1996, Icarus, 124, 62 https://doi.org/10.1006/icar.1996.0190
  20. Shu F. H., Adams F. C., & Lizano S., 1987, ARA&A, 25, 23 https://doi.org/10.1146/annurev.aa.25.090187.000323
  21. Song I., Zuckerman B., & Bessell M. S., 2004, ApJ, 600, 1016 https://doi.org/10.1086/380086
  22. Westin T. N. G., 1985, A&AS, 60, 99

Cited by

  1. ANGULAR MOMENTUM TRANSPORT IN SOLAR-TYPE STARS: TESTING THE TIMESCALE FOR CORE-ENVELOPE COUPLING vol.716, pp.2, 2010, https://doi.org/10.1088/0004-637X/716/2/1269
  2. Accretion‐powered Stellar Winds. III. Spin‐Equilibrium Solutions vol.681, pp.1, 2008, https://doi.org/10.1086/587453
  3. The formation of solar-system analogs in young star clusters vol.622, pp.1432-0746, 2019, https://doi.org/10.1051/0004-6361/201833974