• 제목/요약/키워드: accretion

검색결과 430건 처리시간 0.032초

Effect of Radiation Pressure Formed at the Inner Region of the Accretion Disk on the Accretion Flow in the Outer Region

  • Hongsu Kim;Uicheol Jang
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권4호
    • /
    • pp.247-258
    • /
    • 2023
  • Studying the accretion phenomena provides a window into understanding most heavenly bodies, from the birth of stars to active galactic nuclei (AGN). We would adopt the effect of the radiation pressure, which reduces accretion rates (Ṁ), on the accretion phenomena. The Shakura-Sunyaev α-disk model of disk accretion is a good candidate theory of advection dominated accretion flow (ADAF). Reduction in the angular velocity leads to the suppression the disk luminosity and surface temperature, essentially indicating the transition of the standard accretion disk model from convection dominated accretion flow (CDAF) to ADAF.

CONSTRAINING THE MAGNETIC FIELD IN THE ACCRETION FLOW OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

  • QIAO, ERLIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.457-459
    • /
    • 2015
  • Observations show that the accretion flows in low-luminosity active galactic nuclei (LLAGNs) probably have a two-component structure with an inner hot, optically thin, advection dominated accretion flow (ADAF) and an outer truncated cool, optically thick accretion disk. As shown by Taam et al. (2012), within the framework of the disk evaporation model, the truncation radius as a function of mass accretion rate is strongly affected by including the magnetic field. We define the parameter ${\beta}$ as $p_m=B^2/8{\pi}=(1-{\beta})p_{tot}$, (where $p_{tot}=p_{gas}+p_m$, $p_{gas}$ is gas pressure and $p_m$ is magnetic pressure) to describe the strength of the magnetic field in accretion flows. It is found that an increase of the magnetic field (decreasing the value of ${\beta}$) results in a smaller truncation radius for the accretion disk. We calculate the emergent spectrum of an inner ADAF + an outer truncated accretion disk around a supermassive black hole by considering the effects of the magnetic field on the truncation radius of the accretion disk. By comparing with observations, we found that a weaker magnetic field (corresponding to a bigger value of ${\beta}$) is required to match the observed correlation between $L_{2-10keV}/L_{Edd}$ and the bolometric correction $k_{2-10keV}$, which is consistent with the physics of the accretion flow with a low mass accretion rate around a black hole.

ERotating Bondi Accretion Flow with and without outflow

  • Han, Du-Hwan;Park, Myeong-Gu
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.52.4-53
    • /
    • 2020
  • It is less well known that the properties, especially the mass accretion rate, of accretion flow are affected by the angular momentum of accreting gas. Park (2009) found that the mass accretion rate \dot{m}, mass accretion rate in units of Bondi accretion rate, is inversely proportional to the angular momentum of gas λ, at the Bondi radius where gas sound speed is equal to the free-fall velocity and proportional to the viscosity parameter α, and also Narayan & Fabian (2011) found a similar relation, but the dependence of the mass accretion rate of the gas angular momentum is much weaker. In this work, we investigate the global solutions for the rotating Bondi flow, i.e., polytropic flow accreting via viscosity, for various accretion parameters and the dependence of the mass accretion rate on the physical characteristics of gas. We set the outer boundary at various radius r_{out}=10^3~10^5 r_{Sch}, where r_{Sch} is the Schwarzschild radius of the black hole. For a small Bondi radius, the mass accretion rate changes steeply, as the angular momentum changes, and for a large Bondi radius, the mass accretion rate changes gradually. When the accreting gas has a near or super Keplerian rotation, we confirm that the relation between the mass accretion rate and angular momentum is roughly independent of Bondi radius as shown in Park (2009). We find that \dot{m} is determined by the gas angular momentum at the Bondi radius in units of r_{Sch}c. We also investigate the solution for the rotating Bondi flow with the outflow. The outflow affects the determination of the mass accretion rate at the outer boundary. We find that the relation between the mass accretion and the gas angular momentum becomes shallower as the outflow strengthens.

  • PDF

CAN A WIND MODEL MIMIC A CONVECTION-DOMINATED ACCRETION FLOW MODEL\ulcorner

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper we investigate the properties of advection-dominated accretion flows (ADAFs) in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli number in ADAFs allow a fraction of the gas to be expelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of outflows from the accretion flows(ADIOS). The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion flow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows(CDAFs) in which convection transports the angular momentum inward and the energy outward. There two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flow should have different X-ray flux value due to deficient matter in the wind model.

  • PDF

Episodic Accretion in Star and Planet Formation

  • Lee, Jeong-Eun
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.33.1-33.1
    • /
    • 2019
  • Protostars grow their mass by the accretion of disk material, which is infalling from the envelope. This accretion process is important to the physical and chemical conditions of the disk and envelope, and thus, the planets yet to be formed from the disk material. Therefore, if we map the physical and chemical properties of disks and envelopes, we can study indirectly the accretion process in star formation. In particular, the chemical distribution in the disk and the inner envelope of a young stellar object is greatly affected by the thermal history, which is mainly determined by the accretion process in the system. In my talk, I will review the episodic accretion model for the low mass star formation and observational efforts to find the evidence of episodic accretion. Finally, I will present our recent ALMA detection of several complex organic molecules associated directly with the planet formation in V883 Ori, which is in the burst accretion phase.

  • PDF

THE LONGEVITY OF CIRCUMSTELLAR DISKS: THE η CHAMAELEONTIS CLUSTER

  • LYO A-RAN;LAWSON W. A.
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.241-244
    • /
    • 2005
  • We have analysed near-infrared JHKL observations of the members of the $\approx$9 Myr-old $\eta$ Chamaeleontis cluster. Using (J - H)/(K - L) and (H - K)/(K - L) IR colour-colour diagrams for the brightest 15 members of the cluster, we find the fraction of stellar systems with near-IR excess emission was 0.60 $\pm$ 0.13 (2$\sigma$). For the CTT and WTT star population, we also find a strong correlation between the IR excess and Ha emission which is also known as an accretion indicator. The (K - L) excess of these stars appears to indicate a wide range of star-disk activity; from a CTT star with high levels of accretion, to CTT - WTT transitional objects with evidence for some on-going accretion, and WTT stars with weak or absent IR excesses. Among the brightest 15 members, four stars (RECX 5, 9, 11 and ECHA J0843.3-7905) with IR excesses ${\Delta}$(K - L) > 0.4 mag and strong or variable optical emission were identified as likely experiencing on-going mass accretion from their circumstellar disks which we confirmed their accretion disks from the optical high-resolution echelle spectroscopic study. The result-ing accretion fraction of 0.27 $\pm$ 0.13 (2$\sigma$) suggests that the accretion phase, in addition to the disks themselves, can endure for at least ${\~}$10 Myr.

Thick Accretion Disk and Its Super Eddington Luminosity around a Spinning Black Hole

  • Jang, Uicheol;Kim, Hongsu;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권1호
    • /
    • pp.39-44
    • /
    • 2021
  • In the general accretion disk model theory, the accretion disk surrounding an astronomical object comprises fluid rings obeying Keplerian motion. However, we should consider relativistic and rotational effects as we close in toward the center of accretion disk surrounding spinning compact massive objects such as a black hole or a neutron star. In this study, we explore the geometry of the inner portion of the accretion disk in the context of Mukhopadhyay's pseudo-Newtonian potential approximation for the full general relativity theory. We found that the shape of the accretion disk "puffs up" or becomes thicker and the luminosity of the disk could exceed the Eddington luminosity near the surface of the compact spinning black hole.

A ROLE OF PROTO-ACCRETION DISK: HEATING PROTO-PLANETS TO EVAPORATION

  • Chang, Heon-Young;Choi, Chul-Sung
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권3호
    • /
    • pp.181-186
    • /
    • 2002
  • We study a role of the proto-accretion disk during the formation of the planetary system, which is motivated with recent X-ray observations. There is an observational correlation of the mass of extrasolar planets with their orbital period, which also shows the minimum orbital period. This is insufficiently accounted for by the selection effect alone. Besides, most of planetary formation theories predict the lower limit of semimajor axes of the planetary orbits around 0.01 AU. While the migration theory involving the accretion disk is the most favorable theory, it causes too fast migration and requires the braking mechanism to halt the planet~0.01 AU. The induced gap in the accretion disk due to the planet and/or the truncated disk are desperately required to stop the planet. We explore the planetary evaporation in the accretion disk as another possible scenario to explain the observational lack of massive close-in planets. We calculate the location where the planet is evaporated when the mass and the radius of the planet are given, and find that the evaporation location is approximately proportional to the mass of the planet as ${m_p}^{-1.3}$ and the radius of the planet as ${r_p}^{1.3}$. Therefore, we conclude that even the standard cool accretion disk becomes marginally hot to make the small planet evaporate at~0.01 AU. We discuss other auxiliary mechanisms which may provide the accretion disk with extra heats other than the viscous friction, which may consequently make a larger planet evaporate.

항공기 결빙 예측을 위한 Eulerian 기반 액적 충돌 및 결빙 증식 코드 (AN EULERIAN-BASED DROPLET IMPINGEMENT AND ICE ACCRETION CODE FOR AIRCRAFT ICING PREDICTION)

  • 정성기;명노신;조태환
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.71-78
    • /
    • 2010
  • As a step toward accurate prediction of droplet impingement and ice accretion on aircraft, an Eulerian-based droplet impingement and ice accretion code for air flows around an airfoil containing water droplets is developed. A CFD solver based on the finite volume method was also developed to solve the clean airflow. The finite-volume-based approach for simulating droplet impingement on an airfoil was employed owing to its compatibility with the CFD solver and robustness. For ice accretion module, a simple model based on the control volume is combined with the droplet impingement module that provides the collection efficiency. To validate the present code, it is compared with NASA Glenn IRT (Icing Research Tunnel) experimental data and other well-known icing codes such as LEWICE and FENSAP-ICE. It is shown that the collection efficiency and shape of ice accretion are in good agreement with previous experimental and simulation results.

퍼지 룰베이스에 의한 전선착설 예측 및 대책 지원 기법 (Fuzzy Rulebase Application for Estimation of Snow Accretion on Power Lines and Deicing Countermeasure Plan)

  • 최규형
    • 제어로봇시스템학회논문지
    • /
    • 제9권10호
    • /
    • pp.782-788
    • /
    • 2003
  • Making deicing countermeasure plan against snow accretion on power line is a very complicated problem, which should take into account both the possibility of accidents due to snow accretion on power line and the stable operation of power system. As knowledge engineering can be a good solution to this field of problems, a prototype expert system to assist power system operators in forecasting snow accretion on power lines and making a list of all the feasible and effective deicing countermeasures has been developed. The system has been remodelled into a fuzzy expert system by adopting fuzzy rulebase and fuzzy inference method to systematically process the fuzziness included in the heuristic knowledges. Simulation results based on the past snow accretion accident data show that the proposed system is very promising.